Do you want to publish a course? Click here

Weakening the Detecting Capability of CNN-based Steganalysis

142   0   0.0 ( 0 )
 Added by Sai Ma
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Recently, the application of deep learning in steganalysis has drawn many researchers attention. Most of the proposed steganalytic deep learning models are derived from neural networks applied in computer vision. These kinds of neural networks have distinguished performance. However, all these kinds of back-propagation based neural networks may be cheated by forging input named the adversarial example. In this paper we propose a method to generate steganographic adversarial example in order to enhance the steganographic security of existing algorithms. These adversarial examples can increase the detection error of steganalytic CNN. The experiments prove the effectiveness of the proposed method.



rate research

Read More

Steganalysis means analysis of stego images. Like cryptanalysis, steganalysis is used to detect messages often encrypted using secret key from stego images produced by steganography techniques. Recently lots of new and improved steganography techniques are developed and proposed by researchers which require robust steganalysis techniques to detect the stego images having minimum false alarm rate. This paper discusses about the different Steganalysis techniques and help to understand how, where and when this techniques can be used based on different situations.
Image steganalysis is a special binary classification problem that aims to classify natural cover images and suspected stego images which are the results of embedding very weak secret message signals into covers. How to effectively suppress cover image content and thus make the classification of cover images and stego images easier is the key of this task. Recent researches show that Convolutional Neural Networks (CNN) are very effective to detect steganography by learning discriminative features between cover images and their stegos. Several deep CNN models have been proposed via incorporating domain knowledge of image steganography/steganalysis into the design of the network and achieve state of the art performance on standard database. Following such direction, we propose a novel model called Cover Image Suppression Network (CIS-Net), which improves the performance of spatial image steganalysis by suppressing cover image content as much as possible in model learning. Two novel layers, the Single-value Truncation Layer (STL) and Sub-linear Pooling Layer (SPL), are proposed in this work. Specifically, STL truncates input values into a same threshold when they are out of a predefined interval. Theoretically, we have proved that STL can reduce the variance of input feature map without deteriorating useful information. For SPL, it utilizes sub-linear power function to suppress large valued elements introduced by cover image contents and aggregates weak embedded signals via average pooling. Extensive experiments demonstrate the proposed network equipped with STL and SPL achieves better performance than rich model classifiers and existing CNN models on challenging steganographic algorithms.
With the rapid development of natural language processing technologies, more and more text steganographic methods based on automatic text generation technology have appeared in recent years. These models use the powerful self-learning and feature extraction ability of the neural networks to learn the feature expression of massive normal texts. Then they can automatically generate dense steganographic texts which conform to such statistical distribution based on the learned statistical patterns. In this paper, we observe that the conditional probability distribution of each word in the automatically generated steganographic texts will be distorted after embedded with hidden information. We use Recurrent Neural Networks (RNNs) to extract these feature distribution differences and then classify those features into cover text and stego text categories. Experimental results show that the proposed model can achieve high detection accuracy. Besides, the proposed model can even make use of the subtle differences of the feature distribution of texts to estimate the amount of hidden information embedded in the generated steganographic text.
This paper provides a technical overview of a deep-learning-based encoder method aiming at optimizing next generation hybrid video encoders for driving the block partitioning in intra slices. An encoding approach based on Convolutional Neural Networks is explored to partly substitute classical heuristics-based encoder speed-ups by a systematic and automatic process. The solution allows controlling the trade-off between complexity and coding gains, in intra slices, with one single parameter. This algorithm was proposed at the Call for Proposals of the Joint Video Exploration Team (JVET) on video compression with capability beyond HEVC. In All Intra configuration, for a given allowed topology of splits, a speed-up of $times 2$ is obtained without BD-rate loss, or a speed-up above $times 4$ with a loss below 1% in BD-rate.
Steganalysis has been an important research topic in cybersecurity that helps to identify covert attacks in public network. With the rapid development of natural language processing technology in the past two years, coverless steganography has been greatly developed. Previous text steganalysis methods have shown unsatisfactory results on this new steganography technique and remain an unsolved challenge. Different from all previous text steganalysis methods, in this paper, we propose a text steganalysis method(TS-CNN) based on semantic analysis, which uses convolutional neural network(CNN) to extract high-level semantic features of texts, and finds the subtle distribution differences in the semantic space before and after embedding the secret information. To train and test the proposed model, we collected and released a large text steganalysis(CT-Steg) dataset, which contains a total number of 216,000 texts with various lengths and various embedding rates. Experimental results show that the proposed model can achieve nearly 100% precision and recall, outperforms all the previous methods. Furthermore, the proposed model can even estimate the capacity of the hidden information inside. These results strongly support that using the subtle changes in the semantic space before and after embedding the secret information to conduct text steganalysis is feasible and effective.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا