Do you want to publish a course? Click here

TS-CNN: Text Steganalysis from Semantic Space Based on Convolutional Neural Network

85   0   0.0 ( 0 )
 Added by Zhongliang Yang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Steganalysis has been an important research topic in cybersecurity that helps to identify covert attacks in public network. With the rapid development of natural language processing technology in the past two years, coverless steganography has been greatly developed. Previous text steganalysis methods have shown unsatisfactory results on this new steganography technique and remain an unsolved challenge. Different from all previous text steganalysis methods, in this paper, we propose a text steganalysis method(TS-CNN) based on semantic analysis, which uses convolutional neural network(CNN) to extract high-level semantic features of texts, and finds the subtle distribution differences in the semantic space before and after embedding the secret information. To train and test the proposed model, we collected and released a large text steganalysis(CT-Steg) dataset, which contains a total number of 216,000 texts with various lengths and various embedding rates. Experimental results show that the proposed model can achieve nearly 100% precision and recall, outperforms all the previous methods. Furthermore, the proposed model can even estimate the capacity of the hidden information inside. These results strongly support that using the subtle changes in the semantic space before and after embedding the secret information to conduct text steganalysis is feasible and effective.



rate research

Read More

With the rapid development of natural language processing technologies, more and more text steganographic methods based on automatic text generation technology have appeared in recent years. These models use the powerful self-learning and feature extraction ability of the neural networks to learn the feature expression of massive normal texts. Then they can automatically generate dense steganographic texts which conform to such statistical distribution based on the learned statistical patterns. In this paper, we observe that the conditional probability distribution of each word in the automatically generated steganographic texts will be distorted after embedded with hidden information. We use Recurrent Neural Networks (RNNs) to extract these feature distribution differences and then classify those features into cover text and stego text categories. Experimental results show that the proposed model can achieve high detection accuracy. Besides, the proposed model can even make use of the subtle differences of the feature distribution of texts to estimate the amount of hidden information embedded in the generated steganographic text.
161 - Songtao Wu , Sheng-hua Zhong , 2017
Deep learning based image steganalysis has attracted increasing attentions in recent years. Several Convolutional Neural Network (CNN) models have been proposed and achieved state-of-the-art performances on detecting steganography. In this paper, we explore an important technique in deep learning, the batch normalization, for the task of image steganalysis. Different from natural image classification, steganalysis is to discriminate cover images and stego images which are the result of adding weak stego signals into covers. This characteristic makes a cover image is more statistically similar to its stego than other cover images, requiring steganalytic methods to use paired learning to extract effective features for image steganalysis. Our theoretical analysis shows that a CNN model with multiple normalization layers is hard to be generalized to new data in the test set when it is well trained with paired learning. To hand this difficulty, we propose a novel normalization technique called Shared Normalization (SN) in this paper. Unlike the batch normalization layer utilizing the mini-batch mean and standard deviation to normalize each input batch, SN shares same statistics for all training and test batches. Based on the proposed SN layer, we further propose a novel neural network model for image steganalysis. Extensive experiments demonstrate that the proposed network with SN layers is stable and can detect the state of the art steganography with better performances than previous methods.
Recently, the application of deep learning in steganalysis has drawn many researchers attention. Most of the proposed steganalytic deep learning models are derived from neural networks applied in computer vision. These kinds of neural networks have distinguished performance. However, all these kinds of back-propagation based neural networks may be cheated by forging input named the adversarial example. In this paper we propose a method to generate steganographic adversarial example in order to enhance the steganographic security of existing algorithms. These adversarial examples can increase the detection error of steganalytic CNN. The experiments prove the effectiveness of the proposed method.
The persistent growth in phishing and the rising volume of phishing websites has led to individuals and organizations worldwide becoming increasingly exposed to various cyber-attacks. Consequently, more effective phishing detection is required for improved cyber defence. Hence, in this paper we present a deep learning-based approach to enable high accuracy detection of phishing sites. The proposed approach utilizes convolutional neural networks (CNN) for high accuracy classification to distinguish genuine sites from phishing sites. We evaluate the models using a dataset obtained from 6,157 genuine and 4,898 phishing websites. Based on the results of extensive experiments, our CNN based models proved to be highly effective in detecting unknown phishing sites. Furthermore, the CNN based approach performed better than traditional machine learning classifiers evaluated on the same dataset, reaching 98.2% phishing detection rate with an F1-score of 0.976. The method presented in this paper compares favourably to the state-of-the art in deep learning based phishing website detection.
140 - Mao Yang , Bo Li , Guanxiong Feng 2018
In recent years, deep learning poses a deep technical revolution in almost every field and attracts great attentions from industry and academia. Especially, the convolutional neural network (CNN), one representative model of deep learning, achieves great successes in computer vision and natural language processing. However, simply or blindly applying CNN to the other fields results in lower training effects or makes it quite difficult to adjust the model parameters. In this poster, we propose a general methodology named V-CNN by introducing data visualizing for CNN. V-CNN introduces a data visualization model prior to CNN modeling to make sure the data after processing is fit for the features of images as well as CNN modeling. We apply V-CNN to the network intrusion detection problem based on a famous practical dataset: AWID. Simulation results confirm V-CNN significantly outperforms other studies and the recall rate of each invasion category is more than 99.8%.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا