Do you want to publish a course? Click here

From PanSTARRS Candidates to New RR Lyraes in the K2 Mission

180   0   0.0 ( 0 )
 Added by \\'Aron Juh\\'asz
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we report the discovery of 35 new RR Lyrae variables. These stars were found by a special searching technique. We crossmatched the catalog of the PanSTARRS (PS) sky survey with K2 space photometry data to the validate candidates. It turns out that this technique can find eclipsing binaries as well.



rate research

Read More

118 - L. Molnar 2018
Continuous, high-precision photometry from space revolutionized many fields of stellar astrophysics, and that extends to the well-studied families of RR Lyrae and Cepheid variable stars as well. After the pioneering work of MOST, the CoRoT and Kepler missions released an avalanche of discoveries. We found signals that needed exquisite precision, such as an abundance of additional modes and granulation. Other discoveries, like period doubling, simply needed us to break away from the day-night cycle of the Earth. And the future holds more possibilities, with the BRITE, K2, and Gaia missions at full swing; TESS, taking physical shape; and PLATO securing mission adoption. Here I summarize some of these discoveries and the expectations from future missions.
We present precision 4.5 $mu$m Spitzer transit photometry of eight planet candidates discovered by the K2 mission: K2-52 b, K2-53 b, EPIC 205084841.01, K2-289 b, K2-174 b, K2-87 b, K2-90 b, and K2-124 b. The sample includes four sub-Neptunes and two sub-Saturns, with radii between 2.6 and 18 $R_oplus$, and equilibrium temperatures between 440 and 2000 K. In this paper we identify several targets of potential interest for future characterization studies, demonstrate the utility of transit follow-up observations for planet validation and ephemeris refinement, and present new imaging and spectroscopy data. Our simultaneous analysis of the K2 and Spitzer light curves yields improved estimates of the planet radii, and multi-wavelength information which help validate their planetary nature, including the previously un-validated candidate EPIC 205686202.01 (K2-289 b). Our Spitzer observations yield an order of magnitude increase in ephemeris precision, thus paving the way for efficient future study of these interesting systems by reducing the typical transit timing uncertainty in mid-2021 from several hours to a dozen or so minutes. K2-53 b, K2-289 b, K2-174 b, K2-87 b, and K2-90 b are promising radial velocity (RV) targets given the performance of spectrographs available today or in development, and the M3V star K2-124 hosts a temperate sub-Neptune that is potentially a good target for both RV and atmospheric characterization studies.
We have discovered a new, rare triple-mode RR Lyr star, EPIC 201585823, in the Kepler K2 mission Campaign 1 data. This star pulsates primarily in the fundamental and first-overtone radial modes, and, in addition, a third nonradial mode. The ratio of the period of the nonradial mode to that of the first-overtone radial mode, 0.616285, is remarkably similar to that seen in 11 other triple-mode RR Lyr stars, and in 260 RRc stars observed in the Galactic Bulge. This systematic character promises new constraints on RR Lyr star models. We detected subharmonics of the nonradial mode frequency, which are a signature of period doubling of this oscillation; we note that this phenomenon is ubiquitous in RRc and RRd stars observed from space, and from ground with sufficient precision. The nonradial mode and subharmonic frequencies are not constant in frequency or in amplitude. The amplitude spectrum of EPIC 201585823 is dominated by many combination frequencies among the three interacting pulsation mode frequencies. Inspection of the phase relationships of the combination frequencies in a phasor plot explains the `upward shape of the light curve. We also found that raw data with custom masks encompassing all pixels with significant signal for the star, but without correction for pointing changes, is best for frequency analysis of this star, and, by implication, other RR Lyr stars observed by the K2 mission. We compare several pipeline reductions of the K2 mission data for this star.
Yellow straggler stars (YSSs) fall above the subgiant branch in optical color-magnitude diagrams, between the blue stragglers and the red giants. YSSs may represent a population of evolved blue stragglers, but none have the direct and precise mass and radius measurements needed to determine their evolutionary states and formation histories. Here we report the first asteroseismic mass and radius measurements of such a star, the yellow straggler S1237 in the open cluster M67. We apply asteroseismic scaling relations to a frequency analysis of the Kepler K2 light curve and find a mass of 2.9 $pm$ 0.2 M$_{odot}$ and a radius of 9.2 $pm$ 0.2 R$_{odot}$. This is more than twice the mass of the main- sequence turnoff in M67, suggesting S1237 is indeed an evolved blue straggler. S1237 is the primary in a spectroscopic binary. We update the binary orbital solution and use spectral energy distribution (SED) fitting to constrain the color-magnitude diagram (CMD) location of the secondary star. We find that the secondary is likely an upper main-sequence star near the turnoff, but a slightly hotter blue straggler companion is also possible. We then compare the asteroseismic mass of the primary to its mass from CMD fitting, finding the photometry implies a mass and radius more than 2$sigma$ below the asteroseismic measurement. Finally, we consider formation mechanisms for this star and suggest that S1237 may have formed from dynamical encounters resulting in stellar collisions or a binary merger.
We provide 28 new planet candidates that have been vetted by citizen scientists and expert astronomers. This catalog contains 9 likely rocky candidates ($R_{pl} < 2.0R_oplus$) and 19 gaseous candidates ($R_{pl} > 2.0R_oplus$). Within this list we find one multi-planet system (EPIC 246042088). These two sub-Neptune ($2.99 pm 0.02R_oplus$ and $3.44 pm 0.02R_oplus$) planets exist in a near 3:2 orbital resonance. The discovery of this multi-planet system is important in its addition to the list of known multi-planet systems within the K2 catalog, and more broadly in understanding the multiplicity distribution of the exoplanet population (Zink et al. 2019). The candidates on this list are anticipated to generate RV amplitudes of 0.2-18 m/s, many within the range accessible to current facilities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا