No Arabic abstract
We present a new parameterization of quintessence potentials for dark energy based directly upon the dynamical properties of the equations of motion. Such parameterization arises naturally once the equations of motion are written as a dynamical system in terms of properly defined polar variables. We have identified two different classes of parameters, and we dubbed them as dynamical and passive parameters. The dynamical parameters appear explicitly in the equations of motion, but the passive parameters play just a secondary role in their solutions. The new approach is applied to the so-called thawing potentials and it is argued that only three dynamical parameters are sufficient to capture the evolution of the quintessence fields at late times. This work reconfirms the arbitrariness of the quintessence potentials as the recent observational data fail to constrain the dynamical parameters.
The general parametrization for spacetimes of spherically symmetric Lorentzian, traversable wormholes in an arbitrary metric theory of gravity is presented. The parametrization is similar in spirit to the post-Newtonian parametrized formalism, but with validity that extends beyond the weak field region and covers the whole space. Our method is based on a continued-fraction expansion in terms of a compactified radial coordinate. Calculations of shadows and quasinormal modes for various examples of parametrization of known wormhole metrics that we have performed show that, for most cases, the parametrization provides excellent accuracy already at the first order. Therefore, only a few parameters are dominant and important for finding potentially observable quantities in a wormhole background. We have also extended the analysis to the regime of slow rotation.
For the constant-roll tachyon inflation, we derive the analytical expressions for the scalar and tensor power spectra, the scalar and tensor spectral tilts and the tensor to scalar ratio up to the first order by using the method of Bessel function approximation. The derived $n_s-r$ results for the constant-roll inflation are also compared with the observations, we find that only one constant-roll inflation is consistent with the observations and observations constrain the constant-roll inflation to be slow-roll inflation. The tachyon potential is also reconstructed for the constant-roll inflation which is consistent with the observations.
We use data from Supernovae (SNIa) Pantheon sample, from Baryonic Acoustic Oscillations (BAO), and from cosmic chronometers measurements of the Hubble parameter (CC), alongside arguments from Big Bang Nucleosynthesis (BBN), in order to extract constraints on Myrzakulov $F(R,T)$ gravity. This is a connection-based theory belonging to the Riemann-Cartan subclass, that uses a specific but non-special connection, which then leads to extra degrees of freedom. Our analysis shows that both considered models lead to $sim 1 sigma$ compatibility in all cases. For the involved dimensionless parameter we find that it is constrained to an interval around zero, however the corresponding contours are slightly shifted towards positive values. Furthermore, we use the obtained parameter chains so to reconstruct the corresponding Hubble function, as well as the dark-energy equation-of-state parameter, as a function of redshift. As we show, Model 1 is very close to $Lambda$CDM scenario, while Model 2 resembles it at low redshifts, however at earlier times deviations are allowed. Finally, applying the AIC, BIC and the combined DIC criteria, we deduce that both models present a very efficient fitting behavior, and are statistically equivalent with $Lambda$CDM cosmology, despite the fact that Model 2 does not contain the latter as a limit.
Ghost-free bimetric gravity is a theory of two interacting spin-2 fields, one massless and one massive, in addition to the standard matter particles and fields, thereby generalizing Einsteins theory of general relativity. To parameterize the theory, we use five observables with specific physical interpretations. We present, for the first time, observational constraints on these parameters that: (i) apply to the full theory, (ii) are consistent with a working screening mechanism (i.e., restoring general relativity locally), (iii) exhibit a continuous, real-valued background cosmology (without the Higuchi ghost). For the cosmological constraints, we use data sets from the cosmic microwave background, baryon acoustic oscillations, and type Ia supernovae. Bimetric cosmology provides a good fit to data even for large values of the mixing angle between the massless and massive gravitons. Interestingly, the best-fit model is a self-accelerating solution where the accelerated expansion is due to the dynamical massive spin-2 field, without a cosmological constant. Due to the screening mechanism, the models are consistent with local tests of gravity such as solar system tests and gravitational lensing by galaxies. We also comment on the possibility of alleviating the Hubble tension with this theory.
We find a method to rewrite the equations of motion of scalar fields, generalized DBI field and quintessence, in the autonomous form foremph{arbitrary} scalar potentials. With the aid of this method, we explore the cosmic evolution of generalized DBI field and quintessence with the potential of multiple vacua. Then we find that the scalars are always frozen in the false or true vacuum in the end. Compared to the evolution of quintessence, the generalized DBI field has more times of oscillations around the vacuum of the potential. The reason for this point is that, with the increasing of speed $dot{phi}$, the friction term of generalized DBI field is greatly decreased. Thus the generalized DBI field acquires more times of oscillations.