No Arabic abstract
The scattering trans-Neptunian Objects (TNOs) can be measured to smaller sizes than any other distant small-body population. We use the largest sample yet obtained, 68 discoveries, primarily by the Outer Solar System Origins Survey (OSSOS), to constrain the slope of its luminosity distribution, with sensitivity to much fainter absolute $H$ magnitudes than previous work. Using the analysis technique in Shankman et al. (2016), we confirm that a single slope for the $H$-distribution is not an accurate representation of the scattering TNOs and Centaurs, and that a break in the distribution is required, in support of previous conclusions. A bright-end slope of $alpha_b=0.9$ transitioning to a faint-end slope $alpha_f$ of 0.4-0.5 with a differential number contrast $c$ from 1 (a knee) to 10 (a divot) provides an acceptable match to our data. We find that break magnitudes $H_b$ of 7.7 and 8.3, values both previously suggested for dynamically hot Kuiper belt populations, are equally non-rejectable for a range of $alpha_f$ and $c$ in our statistical analysis. Our preferred divot $H$-distribution transitions to $alpha_f=0.5$ with a divot of contrast $c=3$ at $H_b=8.3$, while our preferred knee $H$-distribution transitions to $alpha_f=0.4$ at $H_b=7.7$. The intrinsic population of scattering TNOs required to match the OSSOS detections is $3times10^6$ for $H_r<12$, and $9times10^4$ for $H_r<8.66$ ($Dgtrsim100$~km), with Centaurs having an intrinsic population two orders of magnitude smaller.
We measure the absolute magnitude, $H$, distribution, $dN(H) propto 10^{alpha H}$ of the scattering Trans-Neptunian Objects (TNOs) as a proxy for their size-frequency distribution. We show that the H-distribution of the scattering TNOs is not consistent with a single-slope distribution, but must transition around $H_g sim 9$ to either a knee with a shallow slope or to a divot, which is a differential drop followed by second exponential distribution. Our analysis is based on a sample of 22 scattering TNOs drawn from three different TNO surveys, the Canada-France Ecliptic Plane Survey (CFEPS, Petit et al. 2011), Alexandersen et al. (2014), and the Outer Solar System Origins Survey (OSSOS, Bannister et al. 2016), all of which provide well characterized detection thresholds, combined with a cosmogonic model for the formation of the scattering TNO population. Our measured absolute magnitude distribution result is independent of the choice of cosmogonic model. Based on our analysis, we estimate that number of scattering TNOs is (2.4-8.3)$times 10^5$ for $H_r < 12$. A divot $H$-distribution is seen in a variety of formation scenarios and may explain several puzzles in Kuiper Belt science. We find that a divot $H$-distribution simultaneously explains the observed scattering TNO, Neptune Trojan, Plutino, and Centaur $H$-distributions while simultaneously predicting a large enough scattering TNO population to act as the sole supply of the Jupiter-Family Comets.
The cold main classical Kuiper Belt consists of those small solar system bodies with low orbital inclinations and orbital semi-major axes between 42.4 and 47.7~au. Various arguments suggest that these objects formed textit{in situ} and the original population has experienced minimal collisional modification since their formation. Using the Outer Solar System Origins Survey (OSSOS) ensemble sample and characterization, combined with constraints on the number of small cold classical objects from deeper surveys and supported by evidence from the Minor Planet Center catalog, we determine the absolute magnitude $H_r$ distribution of the cold classical belt from $H_rsimeq5$ to 12 (roughly diameters of 400 km to 20 km). We conclude that the cold populations size distribution exhibits an exponential cutoff at large sizes. Exponential cutoffs at large sizes are not a natural outcome of pair-wise particle accretion but exponentially tapered power-law size distributions are a feature of numerical simulations of planetesimal formation via a streaming instability. Our observation of an exponential cutoff agrees with previous observational inferences that no large objects ($D gtrsim 400$~km) exist in the cold population. Studies of the transneptunian region are providing the parameters that will enable future streaming-instability studies to determine the initial conditions of planetesimal formation in the $approx 45$~au region of the Suns protoplanetary disk.
Dust trapping accelerates the coagulation of dust particles, and thus it represents an initial step toward the formation of planetesimals. We report $H$-band (1.6 um) linear polarimetric observations and 0.87 mm interferometric continuum observations toward a transitional disk around LkHa 330. As results, a pair of spiral arms were detected in the $H$-band emission and an asymmetric (potentially arm-like) structure was detected in the 0.87 mm continuum emission. We discuss the origin of the spiral arm and the asymmetric structure, and suggest that a massive unseen planet is the most plausible explanation. The possibility of dust trapping and grain growth causing the asymmetric structure was also investigated through the opacity index (beta) by plotting the observed SED slope between 0.87 mm from our SMA observation and 1.3 mm from literature. The results imply that grains are indistinguishable from ISM-like dust in the east side ($beta = 2.0 pm 0.5$), but much smaller in the west side $beta = 0.7^{+0.5}_{-0.4}$, indicating differential dust size distribution between the two sides of the disk. Combining the results of near-infrared and submillimeter observations, we conjecture that the spiral arms exist at the upper surface and an asymmetric structure resides in the disk interior. Future observations at centimeter wavelengths and differential polarization imaging in other bands (Y to K) with extreme AO imagers are required to understand how large dust grains form and to further explore the dust distribution in the disk.
We discuss the detection in the Outer Solar System Origins Survey (OSSOS) of two objects in Neptunes distant 9:1 mean motion resonance at semimajor axis $aapprox~130$~au. Both objects are securely resonant on 10~Myr timescales, with one securely in the 9:1 resonances leading asymmetric libration island and the other in either the symmetric or trailing asymmetric island. These objects are the largest semimajor axis objects with secure resonant classifications, and their detection in a carefully characterized survey allows for the first robust resonance population estimate beyond 100~au. The detection of these objects implies a 9:1 resonance population of $1.1times10^4$ objects with $H_r<8.66$ ($D~gtrsim~100$~km) on similar orbits (95% confidence range of $sim0.4-3times10^4$). Integrations over 4~Gyr of an ensemble of clones spanning these objects orbit fit uncertainties reveal that they both have median resonance occupation timescales of $sim1$~Gyr. These timescales are consistent with the hypothesis that these objects originate in the scattering population but became transiently stuck to Neptunes 9:1 resonance within the last $sim1$~Gyr of solar system evolution. Based on simulations of a model of the current scattering population, we estimate the expected resonance sticking population in the 9:1 resonance to be 1000-4500 objects with $H_r<8.66$; this is marginally consistent with the OSSOS 9:1 population estimate. We conclude that resonance sticking is a plausible explanation for the observed 9:1 population, but we also discuss the possibility of a primordial 9:1 population, which would have interesting implications for the Kuiper belts dynamical history.
Most known trans-Neptunian objects (TNOs) gravitationally scattering off the giant planets have orbital inclinations consistent with an origin from the classical Kuiper belt, but a small fraction of these scattering TNOs have inclinations that are far too large (i > 45 deg) for this origin. These scattering outliers have previously been proposed to be interlopers from the Oort cloud or evidence of an undiscovered planet. Here we test these hypotheses using N-body simulations and the 69 centaurs and scattering TNOs detected in the Outer Solar Systems Origins Survey and its predecessors. We confirm that observed scattering objects cannot solely originate from the classical Kuiper belt, and we show that both the Oort cloud and a distant planet generate observable highly inclined scatterers. Although the number of highly inclined scatterers from the Oort Cloud is ~3 times less than observed, Oort cloud enrichment from the Suns galactic migration or birth cluster could resolve this. Meanwhile, a distant, low-eccentricity 5 Earth-mass planet replicates the observed fraction of highly inclined scatterers, but the overall inclination distribution is more excited than observed. Furthermore, the distant planet generates a longitudinal asymmetry among detached TNOs that is less extreme than often presumed, and its direction reverses across the perihelion range spanned by known TNOs. More complete models that explore the dynamical origins of the planet are necessary to further study these features. With observational biases well-characterized, our work shows that the orbital distribution of detected scattering bodies is a powerful constraint on the unobserved distant solar system.