No Arabic abstract
We discuss the detection in the Outer Solar System Origins Survey (OSSOS) of two objects in Neptunes distant 9:1 mean motion resonance at semimajor axis $aapprox~130$~au. Both objects are securely resonant on 10~Myr timescales, with one securely in the 9:1 resonances leading asymmetric libration island and the other in either the symmetric or trailing asymmetric island. These objects are the largest semimajor axis objects with secure resonant classifications, and their detection in a carefully characterized survey allows for the first robust resonance population estimate beyond 100~au. The detection of these objects implies a 9:1 resonance population of $1.1times10^4$ objects with $H_r<8.66$ ($D~gtrsim~100$~km) on similar orbits (95% confidence range of $sim0.4-3times10^4$). Integrations over 4~Gyr of an ensemble of clones spanning these objects orbit fit uncertainties reveal that they both have median resonance occupation timescales of $sim1$~Gyr. These timescales are consistent with the hypothesis that these objects originate in the scattering population but became transiently stuck to Neptunes 9:1 resonance within the last $sim1$~Gyr of solar system evolution. Based on simulations of a model of the current scattering population, we estimate the expected resonance sticking population in the 9:1 resonance to be 1000-4500 objects with $H_r<8.66$; this is marginally consistent with the OSSOS 9:1 population estimate. We conclude that resonance sticking is a plausible explanation for the observed 9:1 population, but we also discuss the possibility of a primordial 9:1 population, which would have interesting implications for the Kuiper belts dynamical history.
We report the discovery and orbit of a new dwarf planet candidate, 2015 RR$_{245}$, by the Outer Solar System Origins Survey (OSSOS). 2015 RR$_{245}$s orbit is eccentric ($e=0.586$), with a semi-major axis near 82 au, yielding a perihelion distance of 34 au. 2015 RR$_{245}$ has $g-r = 0.59 pm 0.11$ and absolute magnitude $H_{r} = 3.6 pm 0.1$; for an assumed albedo of $p_V = 12$% the object has a diameter of $sim670$ km. Based on astrometric measurements from OSSOS and Pan-STARRS1, we find that 2015 RR$_{245}$ is securely trapped on ten-Myr timescales in the 9:2 mean-motion resonance with Neptune. It is the first TNO identified in this resonance. On hundred-Myr timescales, particles in 2015 RR$_{245}$-like orbits depart and sometimes return to the resonance, indicating that 2015 RR$_{245}$ likely forms part of the long-lived metastable population of distant TNOs that drift between resonance sticking and actively scattering via gravitational encounters with Neptune. The discovery of a 9:2 TNO stresses the role of resonances in the long-term evolution of objects in the scattering disk, and reinforces the view that distant resonances are heavily populated in the current Solar System. This object further motivates detailed modelling of the transient sticking population.
Observations of Kuiper belt objects (KBOs) in Neptunes 5:2 resonance present two puzzles: this third order resonance hosts a surprisingly large population, comparable to the prominent populations of Plutinos and Twotinos in the first order 3:2 and 2:1 resonances, respectively; secondly, their eccentricities are concentrated near $0.4$. To shed light on these puzzles, we investigate the phase space near this resonance with use of Poincare sections of the circular planar restricted three body model. We find several transitions in the phase space structure with increasing eccentricity, which we explain with the properties of the resonant orbit relative to Neptunes. The resonance width is narrow for very small eccentricities, but widens dramatically for $egtrsim0.2$, reaching a maximum near $eapprox0.4$, where it is similar to the maximum widths of the 2:1 and 3:2 resonances. We confirm these results with N-body numerical simulations, including the effects of all four giant planets and a wide range of orbital inclinations of the KBOs. We find that the boundaries of the stable resonance zone are not strongly sensitive to inclination and remain very similar to those found with the simplified three body model, with the caveat that orbits of eccentricity above $sim0.53$ are unstable; higher eccentricity orbits are phase-protected from destabilizing encounters with Neptune but not with Uranus. These results show that the 5:2 resonant KBOs are not more puzzling than the Plutinos and Twotinos; however, detailed understanding of the origins of eccentric, inclined resonant KBOs remains a challenge.
We report the Transiting Exoplanet Survey Satellite ($TESS$) detection of a multi-planet system orbiting the $V=10.9$ K0 dwarf TOI 125. We find evidence for up to five planets, with varying confidence. Three high signal-to-noise transit signals correspond to sub-Neptune-sized planets ($2.76$, $2.79$, and $2.94 R_{oplus}$), and we statistically validate the planetary nature of the two inner planets ($P_b = 4.65$ days, $P_c = 9.15$ days). With only two transits observed, we report the outer object ($P_{.03} = 19.98$ days) as a high signal-to-noise ratio planet candidate. We also detect a candidate transiting super-Earth ($1.4 R_{oplus}$) with an orbital period of only $12.7$ hours and a candidate Neptune-sized planet ($4.2 R_{oplus}$) with a period of $13.28$ days, both at low signal-to-noise. This system is amenable to mass determination via radial velocities and transit timing variations, and provides an opportunity to study planets of similar size while controlling for age and environment. The ratio of orbital periods between TOI 125 b and c ($P_c/P_b = 1.97$) is slightly smaller than an exact 2:1 commensurability and is atypical of multiple planet systems from $Kepler$, which show a preference for period ratios just $wide$ of first-order period ratios. A dynamical analysis refines the allowed parameter space through stability arguments and suggests that, despite the nearly commensurate periods, the system is unlikely to be in resonance.
Resonant dynamics plays a significant role in the past evolution and current state of our outer Solar System. The population ratios and spatial distribution of Neptunes resonant populations are direct clues to understanding the history of our planetary system. The orbital structure of the objects in Neptunes 2:1 mean-motion resonance (emph{twotinos}) has the potential to be a tracer of planetary migration processes. Different migration processes produce distinct architectures, recognizable by well-characterized surveys. However, previous characterized surveys only discovered a few twotinos, making it impossible to model the intrinsic twotino population. With a well-designed cadence and nearly 100% tracking success, the Outer Solar System Origins Survey (OSSOS) discovered 838 trans-Neptunian objects, of which 34 are securely twotinos with well-constrained libration angles and amplitudes. We use the OSSOS twotinos and the survey characterization parameters via the OSSOS Survey Simulator to inspect the intrinsic population and orbital distributions of twotino. The estimated twotino population, 4400$^{+1500}_{-1100}$ with $H_r<8.66$ (diameter$sim$100km) at 95% confidence, is consistent with the previous low-precision estimate. We also constrain the width of the inclination distribution to a relatively narrow value of $sigma_i$=6$^circ$$^{+1}_{-1}$, and find the eccentricity distribution is consistent with a Gaussian centered on $e_mathrm{c}=0.275$ with a width $e_mathrm{w}=0.06$. We find a single-slope exponential luminosity function with $alpha=0.6$ for the twotinos. Finally, we for the first time meaningfully constrain the fraction of symmetric twotinos, and the ratio of the leading asymmetric islands; both fractions are in a range of 0.2--0.6. These measurements rule out certain theoretical models of Neptunes migration history.
We present spectroscopic measurements of the Rossiter-McLaughlin effect for the planet b of Kepler-9 multi-transiting planet system. The resulting sky-projected spin-orbit angle is $lambda=-13^{circ} pm 16^{circ}$, which favors an aligned system and strongly disfavors highly misaligned, polar, and retrograde orbits. Including Kepler-9, there are now a total of 4 Rossiter-McLaughlin effect measurements for multiplanet systems, all of which are consistent with spin-orbit alignment.