Do you want to publish a course? Click here

Ontology-Based Reasoning about the Trustworthiness of Cyber-Physical Systems

135   0   0.0 ( 0 )
 Added by Marcello Balduccini
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

It has been challenging for the technical and regulatory communities to formulate requirements for trustworthiness of the cyber-physical systems (CPS) due to the complexity of the issues associated with their design, deployment, and operations. The US National Institute of Standards and Technology (NIST), through a public working group, has released a CPS Framework that adopts a broad and integrated view of CPS and positions trustworthiness among other aspects of CPS. This paper takes the model created by the CPS Framework and its further developments one step further, by applying ontological approaches and reasoning techniques in order to achieve greater understanding of CPS. The example analyzed in the paper demonstrates the enrichment of the original CPS model obtained through ontology and reasoning and its ability to deliver additional insights to the developers and operators of CPS.



rate research

Read More

This work focuses on the use of deep learning for vulnerability analysis of cyber-physical systems (CPS). Specifically, we consider a control architecture widely used in CPS (e.g., robotics), where the low-level control is based on e.g., the extended Kalman filter (EKF) and an anomaly detector. To facilitate analyzing the impact potential sensing attacks could have, our objective is to develop learning-enabled attack generators capable of designing stealthy attacks that maximally degrade system operation. We show how such problem can be cast within a learning-based grey-box framework where parts of the runtime information are known to the attacker, and introduce two models based on feed-forward neural networks (FNN); both models are trained offline, using a cost function that combines the attack effects on the estimation error and the residual signal used for anomaly detection, so that the trained models are capable of recursively generating such effective sensor attacks in real-time. The effectiveness of the proposed methods is illustrated on several case studies.
Industrial cyber-physical systems (ICPSs) manage critical infrastructures by controlling the processes based on the physics data gathered by edge sensor networks. Recent innovations in ubiquitous computing and communication technologies have prompted the rapid integration of highly interconnected systems to ICPSs. Hence, the security by obscurity principle provided by air-gapping is no longer followed. As the interconnectivity in ICPSs increases, so does the attack surface. Industrial vulnerability assessment reports have shown that a variety of new vulnerabilities have occurred due to this transition while the most common ones are related to weak boundary protection. Although there are existing surveys in this context, very little is mentioned regarding these reports. This paper bridges this gap by defining and reviewing ICPSs from a cybersecurity perspective. In particular, multi-dimensional adaptive attack taxonomy is presented and utilized for evaluating real-life ICPS cyber incidents. We also identify the general shortcomings and highlight the points that cause a gap in existing literature while defining future research directions.
Cyber-Physical Systems (CPSs) are increasingly important in critical areas of our society such as intelligent power grids, next generation mobile devices, and smart buildings. CPS operation has characteristics including considerable heterogeneity, variable dynamics, and high complexity. These systems have also scarce resources in order to satisfy their entire load demand, which can be divided into data processing and service execution. These new characteristics of CPSs need to be managed with novel strategies to ensure their resilient operation. Towards this goal, we propose an SDN-based solution enhanced by distributed Network Function Virtualization (NFV) modules located at the top-most level of our solution architecture. These NFV agents will take orchestrated management decisions among themselves to ensure a resilient CPS configuration against threats, and an optimum operation of the CPS. For this, we study and compare two distinct incentive mechanisms to enforce cooperation among NFVs. Thus, we aim to offer novel perspectives into the management of resilient CPSs, embedding IoT devices, modeled by Game Theory (GT), using the latest software and virtualization platforms.
The proliferation of digitization and complexity of connectivity in Cyber-Physical Systems (CPSs) calls for a mechanism that can evaluate the functionality and security of critical infrastructures. In this regard, Digital Twins (DTs) are revolutionizing the CPSs. Driven by asset-centric data, DTs are virtual replicas of physical systems that mirror every facet of a product or process and can provide actionable insights through monitoring, optimization, and prediction. Furthermore, replication and simulation modes in DTs can prevent and detect security flaws in the CPS without obstructing the ongoing operations of the live system. However, such benefits of DTs are based on an assumption about data trust, integrity, and security. Data trustworthiness is considered to be more critical when it comes to the integration and interoperability of multiple components or sub-components among different DTs owned by multiple stakeholders to provide an aggregated view of the complex physical system. Moreover, analyzing the huge volume of data for creating actionable insights in real-time is another critical requirement that demands automation. This article focuses on securing CPSs by integrating Artificial Intelligence (AI) and blockchain for intelligent and trusted DTs. We envision an AI-aided blockchain-based DT framework that can ensure anomaly prevention and detection in addition to responding against novel attack vectors in parallel with the normal ongoing operations of the live systems. We discuss the applicability of the proposed framework for the automotive industry as a CPS use case. Finally, we identify challenges that impede the implementation of intelligence-driven architectures in CPS.
Cyber-physical systems, such as self-driving cars or autonomous aircraft, must defend against attacks that target sensor hardware. Analyzing system design can help engineers understand how a compromised sensor could impact the systems behavior; however, designing security analyses for cyber-physical systems is difficult due to their combination of discrete dynamics, continuous dynamics, and nondeterminism. This paper contributes a framework for modeling and analyzing sensor attacks on cyber-physical systems, using the formalism of hybrid programs. We formalize and analyze two relational properties of a systems robustness. These relational properties respectively express (1) whether a systems safety property can be influenced by sensor attacks, and (2) whether a systems high-integrity state can be affected by sensor attacks. We characterize these relational properties by defining an equivalence relation between a system under attack and the original unattacked system. That is, the system satisfies the robustness properties if executions of the attacked system are appropriately related to executions of the unattacked system. We present two techniques for reasoning about the equivalence relation and thus proving the relational properties for a system. One proof technique decomposes large proof obligations to smaller proof obligations. The other proof technique adapts the self-composition technique from the literature on secure information-flow, allowing us to reduce reasoning about the equivalence of two systems to reasoning about properties of a single system. This technique allows us to reuse existing tools for reasoning about properties of hybrid programs, but is challenging due to the combination of discrete dynamics, continuous dynamics, and nondeterminism. To evaluate, we present three case studies motivated by real design flaws in existing cyber-physical systems.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا