Do you want to publish a course? Click here

Resilient Cyber-Physical Systems: Using NFV Orchestration

89   0   0.0 ( 0 )
 Added by Jose Moura
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Cyber-Physical Systems (CPSs) are increasingly important in critical areas of our society such as intelligent power grids, next generation mobile devices, and smart buildings. CPS operation has characteristics including considerable heterogeneity, variable dynamics, and high complexity. These systems have also scarce resources in order to satisfy their entire load demand, which can be divided into data processing and service execution. These new characteristics of CPSs need to be managed with novel strategies to ensure their resilient operation. Towards this goal, we propose an SDN-based solution enhanced by distributed Network Function Virtualization (NFV) modules located at the top-most level of our solution architecture. These NFV agents will take orchestrated management decisions among themselves to ensure a resilient CPS configuration against threats, and an optimum operation of the CPS. For this, we study and compare two distinct incentive mechanisms to enforce cooperation among NFVs. Thus, we aim to offer novel perspectives into the management of resilient CPSs, embedding IoT devices, modeled by Game Theory (GT), using the latest software and virtualization platforms.



rate research

Read More

We introduce deceptive signaling framework as a new defense measure against advanced adversaries in cyber-physical systems. In general, adversaries look for system-related information, e.g., the underlying state of the system, in order to learn the system dynamics and to receive useful feedback regarding the success/failure of their actions so as to carry out their malicious task. To this end, we craft the information that is accessible to adversaries strategically in order to control their actions in a way that will benefit the system, indirectly and without any explicit enforcement. Under the solution concept of game-theoretic hierarchical equilibrium, we arrive at a semi-definite programming problem equivalent to the infinite-dimensional optimization problem faced by the defender while selecting the best strategy when the information of interest is Gaussian and both sides have quadratic cost functions. The equivalence result holds also for the scenarios where the defender can have partial or noisy measurements or the objective of the adversary is not known. We show the optimality of linear signaling rule within the general class of measurable policies in communication scenarios and also compute the optimal linear signaling rule in control scenarios.
Industrial cyber-physical systems (ICPSs) manage critical infrastructures by controlling the processes based on the physics data gathered by edge sensor networks. Recent innovations in ubiquitous computing and communication technologies have prompted the rapid integration of highly interconnected systems to ICPSs. Hence, the security by obscurity principle provided by air-gapping is no longer followed. As the interconnectivity in ICPSs increases, so does the attack surface. Industrial vulnerability assessment reports have shown that a variety of new vulnerabilities have occurred due to this transition while the most common ones are related to weak boundary protection. Although there are existing surveys in this context, very little is mentioned regarding these reports. This paper bridges this gap by defining and reviewing ICPSs from a cybersecurity perspective. In particular, multi-dimensional adaptive attack taxonomy is presented and utilized for evaluating real-life ICPS cyber incidents. We also identify the general shortcomings and highlight the points that cause a gap in existing literature while defining future research directions.
This work focuses on the use of deep learning for vulnerability analysis of cyber-physical systems (CPS). Specifically, we consider a control architecture widely used in CPS (e.g., robotics), where the low-level control is based on e.g., the extended Kalman filter (EKF) and an anomaly detector. To facilitate analyzing the impact potential sensing attacks could have, our objective is to develop learning-enabled attack generators capable of designing stealthy attacks that maximally degrade system operation. We show how such problem can be cast within a learning-based grey-box framework where parts of the runtime information are known to the attacker, and introduce two models based on feed-forward neural networks (FNN); both models are trained offline, using a cost function that combines the attack effects on the estimation error and the residual signal used for anomaly detection, so that the trained models are capable of recursively generating such effective sensor attacks in real-time. The effectiveness of the proposed methods is illustrated on several case studies.
Defending computer networks from cyber attack requires coordinating actions across multiple nodes based on imperfect indicators of compromise while minimizing disruptions to network operations. Advanced attacks can progress with few observable signals over several months before execution. The resulting sequential decision problem has large observation and action spaces and a long time-horizon, making it difficult to solve with existing methods. In this work, we present techniques to scale deep reinforcement learning to solve the cyber security orchestration problem for large industrial control networks. We propose a novel attention-based neural architecture with size complexity that is invariant to the size of the network under protection. A pre-training curriculum is presented to overcome early exploration difficulty. Experiments show in that the proposed approaches greatly improve both the learning sample complexity and converged policy performance over baseline methods in simulation.
Cyber Physical Systems (CPS) are characterized by their ability to integrate the physical and information or cyber worlds. Their deployment in critical infrastructure have demonstrated a potential to transform the world. However, harnessing this potential is limited by their critical nature and the far reaching effects of cyber attacks on human, infrastructure and the environment. An attraction for cyber concerns in CPS rises from the process of sending information from sensors to actuators over the wireless communication medium, thereby widening the attack surface. Traditionally, CPS security has been investigated from the perspective of preventing intruders from gaining access to the system using cryptography and other access control techniques. Most research work have therefore focused on the detection of attacks in CPS. However, in a world of increasing adversaries, it is becoming more difficult to totally prevent CPS from adversarial attacks, hence the need to focus on making CPS resilient. Resilient CPS are designed to withstand disruptions and remain functional despite the operation of adversaries. One of the dominant methodologies explored for building resilient CPS is dependent on machine learning (ML) algorithms. However, rising from recent research in adversarial ML, we posit that ML algorithms for securing CPS must themselves be resilient. This paper is therefore aimed at comprehensively surveying the interactions between resilient CPS using ML and resilient ML when applied in CPS. The paper concludes with a number of research trends and promising future research directions. Furthermore, with this paper, readers can have a thorough understanding of recent advances on ML-based security and securing ML for CPS and countermeasures, as well as research trends in this active research area.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا