Do you want to publish a course? Click here

Optimizing Sponsored Search Ranking Strategy by Deep Reinforcement Learning

120   0   0.0 ( 0 )
 Added by Li He
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Sponsored search is an indispensable business model and a major revenue contributor of almost all the search engines. From the advertisers side, participating in ranking the search results by paying for the sponsored search advertisement to attract more awareness and purchase facilitates their commercial goal. From the users side, presenting personalized advertisement reflecting their propensity would make their online search experience more satisfactory. Sponsored search platforms rank the advertisements by a ranking function to determine the list of advertisements to show and the charging price for the advertisers. Hence, it is crucial to find a good ranking function which can simultaneously satisfy the platform, the users and the advertisers. Moreover, advertisements showing positions under different queries from different users may associate with advertisement candidates of different bid price distributions and click probability distributions, which requires the ranking functions to be optimized adaptively to the traffic characteristics. In this work, we proposed a generic framework to optimize the ranking functions by deep reinforcement learning methods. The framework is composed of two parts: an offline learning part which initializes the ranking functions by learning from a simulated advertising environment, allowing adequate exploration of the ranking function parameter space without hurting the performance of the commercial platform. An online learning part which further optimizes the ranking functions by adapting to the online data distribution. Experimental results on a large-scale sponsored search platform confirm the effectiveness of the proposed method.



rate research

Read More

High Quality Related Search Query Suggestions task aims at recommending search queries which are real, accurate, diverse, relevant and engaging. Obtaining large amounts of query-quality human annotations is expensive. Prior work on supervised query suggestion models suffered from selection and exposure bias, and relied on sparse and noisy immediate user-feedback (e.g., clicks), leading to low quality suggestions. Reinforcement Learning techniques employed to reformulate a query using terms from search results, have limited scalability to large-scale industry applications. To recommend high quality related search queries, we train a Deep Reinforcement Learning model to predict the query a user would enter next. The reward signal is composed of long-term session-based user feedback, syntactic relatedness and estimated naturalness of generated query. Over the baseline supervised model, our proposed approach achieves a significant relative improvement in terms of recommendation diversity (3%), down-stream user-engagement (4.2%) and per-sentence word repetitions (82%).
We introduce deep learning models to the two most important stages in product search at JD.com, one of the largest e-commerce platforms in the world. Specifically, we outline the design of a deep learning system that retrieves semantically relevant items to a query within milliseconds, and a pairwise deep re-ranking system, which learns subtle user preferences. Compared to traditional search systems, the proposed approaches are better at semantic retrieval and personalized ranking, achieving significant improvements.
Recent advances in quantum computing have drawn considerable attention to building realistic application for and using quantum computers. However, designing a suitable quantum circuit architecture requires expert knowledge. For example, it is non-trivial to design a quantum gate sequence for generating a particular quantum state with as fewer gates as possible. We propose a quantum architecture search framework with the power of deep reinforcement learning (DRL) to address this challenge. In the proposed framework, the DRL agent can only access the Pauli-$X$, $Y$, $Z$ expectation values and a predefined set of quantum operations for learning the target quantum state, and is optimized by the advantage actor-critic (A2C) and proximal policy optimization (PPO) algorithms. We demonstrate a successful generation of quantum gate sequences for multi-qubit GHZ states without encoding any knowledge of quantum physics in the agent. The design of our framework is rather general and can be employed with other DRL architectures or optimization methods to study gate synthesis and compilation for many quantum states.
We study a novel problem of sponsored search (SS) for E-Commerce platforms: how we can attract query users to click product advertisements (ads) by presenting them features of products that attract them. This not only benefits merchants and the platform, but also improves user experience. The problem is challenging due to the following reasons: (1) We need to carefully manipulate the ad content without affecting user search experience. (2) It is difficult to obtain users explicit feedback of their preference in product features. (3) Nowadays, a great portion of the search traffic in E-Commerce platforms is from their mobile apps (e.g., nearly 90% in Taobao). The situation would get worse in the mobile setting due to limited space. We are focused on the mobile setting and propose to manipulate ad titles by adding a few selling point keywords (SPs) to attract query users. We model it as a personalized attractive SP prediction problem and carry out both large-scale offline evaluation and online A/B tests in Taobao. The contributions include: (1) We explore various exhibition schemes of SPs. (2) We propose a surrogate of user explicit feedback for SP preference. (3) We also explore multi-task learning and various additional features to boost the performance. A variant of our best model has already been deployed in Taobao, leading to a 2% increase in revenue per thousand impressions and an opt-out rate of merchants less than 4%.
156 - Weizhen Qi , Yeyun Gong , Yu Yan 2020
In a sponsored search engine, generative retrieval models are recently proposed to mine relevant advertisement keywords for users input queries. Generative retrieval models generate outputs token by token on a path of the target library prefix tree (Trie), which guarantees all of the generated outputs are legal and covered by the target library. In actual use, we found several typical problems caused by Trie-constrained searching length. In this paper, we analyze these problems and propose a looking ahead strategy for generative retrieval models named ProphetNet-Ads. ProphetNet-Ads improves the retrieval ability by directly optimizing the Trie-constrained searching space. We build a dataset from a real-word sponsored search engine and carry out experiments to analyze different generative retrieval models. Compared with Trie-based LSTM generative retrieval model proposed recently, our single model result and integrated result improve the recall by 15.58% and 18.8% respectively with beam size 5. Case studies further demonstrate how these problems are alleviated by ProphetNet-Ads clearly.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا