Do you want to publish a course? Click here

Spectroscopic Follow-Up of the Hercules Aquila Cloud

53   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We designed a follow-up program to find the spectroscopic properties of the Hercules-Aquila Cloud (HAC) and test scenarios for its formation. We measured the radial velocities (RVs) of 45 RR Lyrae in the southern portion of the HAC using the facilities at the MDM observatory, producing the first large sample of velocities in the HAC. We found a double-peaked distribution in RVs, skewed slightly to negative velocities. We compared both the morphology of HAC projected onto the plane of the sky and the distribution of velocities in this structure outlined by RR Lyrae and other tracer populations at different distances to N-body simulations. We found that the behaviour is characteristic of an old, well-mixed accretion event with small apo-galactic radius. We cannot yet rule out other formation mechanisms for the HAC. However, if our interpretation is correct, HAC represents just a small portion of a much larger debris structure spread throughout the inner Galaxy whose distinct kinematic structure should be apparent in RV studies along many lines of sight.



rate research

Read More

109 - V. Belokurov 2007
We present evidence for a substantial overdensity of stars in the direction of the constellations of Hercules and Aquila. The Cloud is centered at a Galactic longitude of about 40 degrees and extends above and below the Galactic plane by at least 50 degrees. Given its off-centeredness and height, it is unlikely that the Hercules-Aquila Cloud is related to the bulge or thick disk. More likely, this is a new structural component of the Galaxy that passes through the disk. The Cloud stretches about 80 degrees in longitude. Its heliocentric distance lies between 10 and 20 kpc so that the extent of the Cloud in projection is roughly 20 kpc by 15 kpc. It has an absolute magnitude of -13 and its stellar population appears to be comparable to, but somewhat more metal-rich than, M92.
We map the large-scale sub-structure in the Galactic stellar halo using accurate 3D positions of ~14,000 RR Lyrae reported by the Catalina Sky Survey. In the heliocentric distance range of 10-25 kpc, in the region of the sky approximately bounded by 30{deg} < l < 55{deg} and -45{deg} < b < -25{deg}, there appears to be a strong excess of RRab stars. This overdensity, peaking at 18 kpc, is most likely associated with the so-called Hercules-Aquila Cloud, previously detected using Main Sequence tracers at similar distances in the Sloan Digital Sky Survey data. Our analysis of the period-amplitude distribution of RR Lyrae in this region indicates that the HAC is dominated by the Oosterhoff I type population. By comparing the measured RR Lyrae number density to models of a smooth stellar halo, we estimate the significance of the observed excess and provide an updated estimate of the total luminosity of the Clouds progenitor.
We present the results of the spectroscopic follow up of the QUBRICS survey. The selection method is based on a machine learning approach applied to photometric catalogs, covering an area of $sim$ 12,400 deg$^2$ in the Southern Hemisphere. The spectroscopic observations started in 2018 and identified 55 new, high-redshift (z>=2.5), bright (i<=18) QSOs, with the catalog published in late 2019. Here we report the current status of the survey, bringing the total number of bright QSOs at z<=2.5 identified by QUBRICS to 224. The success rate of the QUBRICS selection method, in its most recent training, is estimated to be 68%. The predominant contaminant turns out to be lower-z QSOs at z<2.5. This survey provides a unique sample of bright QSOs at high-z available for a number of cosmological investigations. In particular, carrying out the redshift drift measurements (Sandage Test) in the Southern Hemisphere, using the HIRES spectrograph at the 39m ELT, appears to be possible with less than 2500 hours of observations spread over 30 targets in 25 years.
We present Hubble Space Telescope (HST) WFPC2 photometry of 13 microlensed source stars from the 5.7 year Large Magellanic Cloud (LMC) survey conducted by the MACHO Project. The microlensing source stars are identified by deriving accurate centroids in the ground-based MACHO images using difference image analysis (DIA) and then transforming the DIA coordinates to the HST frame. None of these sources is coincident with a background galaxy, which rules out the possibility that the MACHO LMC microlensing sample is contaminated with misidentified supernovae or AGN in galaxies behind the LMC. This supports the conclusion that the MACHO LMC microlensing sample has only a small amount of contamination due to non-microlensing forms of variability. We compare the WFPC2 source star magnitudes with the lensed flux predictions derived from microlensing fits to the light curve data. In most cases the source star brightness is accurately predicted. Finally, we develop a statistic which constrains the location of the Large Magellanic Cloud (LMC) microlensing source stars with respect to the distributions of stars and dust in the LMC and compare this to the predictions of various models of LMC microlensing. This test excludes at > 90% confidence level models where more than 80% of the source stars lie behind the LMC. Exotic models that attempt to explain the excess LMC microlensing optical depth seen by MACHO with a population of background sources are disfavored or excluded by this test. Models in which most of the lenses reside in a halo or spheroid distribution associated with either the Milky Way or the LMC are consistent which these data, but LMC halo or spheroid models are favored by the combined MACHO and EROS microlensing results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا