No Arabic abstract
Tail state formation in solar cell absorbers leads to a detrimental effect on solar cell performance. Nevertheless, the characterization of the band tailing in experimental semiconductor crystals is generally difficult. In this article, to determine the tail state generation in various solar cell materials, we have developed a quite general theoretical scheme in which the experimental Urbach energy is compared with the absorption edge energy derived from density functional theory (DFT) calculation. For this purpose, the absorption spectra of solar cell materials, including CdTe, CuInSe2 (CISe), CuGaSe2 (CGSe), Cu2ZnSnSe4 (CZTSe), Cu2ZnSnS4 (CZTS) and hybrid perovskites, have been calculated by DFT particularly using very-high-density k meshes. As a result, we find that the tail state formation is negligible in CdTe, CISe, CGSe and hybrid perovskite polycrystals. However, coevaporated CZTSe and CZTS layers exhibit very large Urbach energies, which are far larger than the theoretical counterparts. Based on DFT analysis results, we conclude that the quite large tail state formation observed in the CZTSe and CZTS originates from extensive cation disordering. In particular, even a slight cation substitution is found to generate unusual band fluctuation in CZT(S)Se. In contrast, CH3NH3PbI3 hybrid perovskite shows the sharpest absorption edge theoretically, which agrees with experiment.
In semiconducting solar-cell absorbers, high absorption coefficient (alpha) near the band-edge region is critical to maximize the photocurrent generation and collection. Nevertheless, despite the importance of the band-edge absorption characteristics, the quantitative analysis of the band-edge optical transitions has not been performed. In this study, we have implemented systematic density functional theory (DFT) calculation, focusing on the band-edge oscillator strength of seven practical solar cell absorbers (GaAs, InP, CdTe, CuInSe2, CuGaSe2, Cu2ZnSnSe4, and Cu2ZnSnS4) with zincblende, chalcopyrite and kesterite structures. We find that all these crystals exhibit the giant oscillator strength near the band gap region, revealing the fact that alpha in the band gap region is enhanced significantly by the anomalous high oscillator strength. In high-energy optical transitions, however, the oscillator strength reduces sharply and the absorption properties are determined primarily by the joint density-of-state contribution. Based on DFT results, we show that the giant oscillator strength in the band edge region originates from a unique tetrahedral-bonding structure, with a negligible effect of constituent atoms.
The bulk photovoltaic effect generates intrinsic photocurrents in materials without inversion symmetry. Shift current is one of the bulk photovoltaic phenomena related to the Berry phase of the constituting electronic bands: photo-excited carriers coherently shift in real space due to the difference in the Berry connection between the valence and conduction bands. Ferroelectric semiconductors and Weyl semimetals are known to exhibit such nonlinear optical phenomena. Here we consider chalcopyrite semiconductor ZnSnP$_2$ which lacks inversion symmetry and calculate the shift current conductivity. We find that the magnitude of the shift current is comparable to the recently measured values on other ferroelectric semiconductors and an order of magnitude larger than bismuth ferrite. The peak response for both optical and shift current conductivity, which mainly comes from P-3$p$ and Sn-5$p$ orbitals, is several eV above the bandgap.
In this work, perovskite solar cells (PSCs) with different transport layers were fabricated to understand the hysteresis phenomenon under a series of scan rates. The experimental results show that the hysteresis phenomenon would be affected by the dielectric constant of transport layers and scan rate significantly. To explain this, a modified Poisson and drift-diffusion solver coupled with a fully time-dependent ion migration model is developed to analyze how the ion migration affects the performance and hysteresis of PSCs. The simulation model was optimized for carrier transportation of organic materials, which can simulate the organic transport layer correctly without using heavy doping in simulating the organic transport layer. The modeling results show that the most crucial factor in the hysteresis behavior is the built-in electric field of the perovskite. The non-linear hysteresis curves are demonstrated under different scan rates, and the mechanism of the hysteresis behavior is explained. The findings reveal why the change in hysteresis degree with scan rate is Gaussian shaped rather than monotonic. Additionally, other factors contributing to the degree of hysteresis are determined to be the degree of degradation in the perovskite material, the quality of the perovskite crystal, and the materials of the transport layer, which corresponds to the total ion density, carrier lifetime of perovskite, and the dielectric constant of the transport layer, respectively. Finally, it was found that the dielectric constant of the transport layer is a key factor affecting hysteresis in perovskite solar cells; a lower dielectric constant corresponds to a higher electric field of the transport layer. Hence, if the electric field of the perovskite material is small, the degree of hysteresis is small and vice versa.
Cu$_2$ZnSnS$_4$ is an earth-abundant photovoltaic absorber material predicted to provide a sustainable solution for commercial solar applications. One of the main limitations restricting its commercialization is the issue of cation disorder. Raman spectroscopy has been a sought after technique to characterize disorder in CZTS while a clear consensus between theoretical and experimental results is yet to be achieved. In the present study, via the virtual crystal approximation, we take into account the progressive nature of Cu-Zn disorder in CZTS: we obtain the phonon frequencies at zone-center within the density functional perturbation theory formalism, and further compute the Raman spectra for the disordered phases, achieving a consensus between theory and experiment. These calculations confirm the presence of complete disorder in Cu-Zn 2$a$, 2$c$ and 2$d$ Wyckoff sites. They also show that the Raman intensities of two prominent $A$ phonon modes characterized by motion of S atoms, also known to be experimentally significant, play a key role in understanding the nature of disorder in CZTS.
The ground state band structure, magnetic moments, charges and population numbers of electronic shells of Cu and Fe atoms have been calculated for chalcopyrite CuFeS2 using density functional theory. The comparison between our calculation results and experimental data (X-ray photoemission, X-ray absorption and neutron diffraction spectroscopy) has been made. Our calculations predict a formal oxidation state for chalcopyrite as Cu$^{1+}$Fe$^{3+}$S$_{2}$$^{2-}$. However, the assignment of formal valence state to transition metal atoms appears to be oversimplified. It is anticipated that the valence state can be confirmed experimentally by nuclear magnetic and nuclear quadrupole resonance and Mossbauer spectroscopy methods.