Do you want to publish a course? Click here

Influences of Dielectric Constant and Scan Rate to Hysteresis Effect in Perovskite Solar Cell: Simulation and Experimental Analyses

371   0   0.0 ( 0 )
 Added by Yuh-Renn Wu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this work, perovskite solar cells (PSCs) with different transport layers were fabricated to understand the hysteresis phenomenon under a series of scan rates. The experimental results show that the hysteresis phenomenon would be affected by the dielectric constant of transport layers and scan rate significantly. To explain this, a modified Poisson and drift-diffusion solver coupled with a fully time-dependent ion migration model is developed to analyze how the ion migration affects the performance and hysteresis of PSCs. The simulation model was optimized for carrier transportation of organic materials, which can simulate the organic transport layer correctly without using heavy doping in simulating the organic transport layer. The modeling results show that the most crucial factor in the hysteresis behavior is the built-in electric field of the perovskite. The non-linear hysteresis curves are demonstrated under different scan rates, and the mechanism of the hysteresis behavior is explained. The findings reveal why the change in hysteresis degree with scan rate is Gaussian shaped rather than monotonic. Additionally, other factors contributing to the degree of hysteresis are determined to be the degree of degradation in the perovskite material, the quality of the perovskite crystal, and the materials of the transport layer, which corresponds to the total ion density, carrier lifetime of perovskite, and the dielectric constant of the transport layer, respectively. Finally, it was found that the dielectric constant of the transport layer is a key factor affecting hysteresis in perovskite solar cells; a lower dielectric constant corresponds to a higher electric field of the transport layer. Hence, if the electric field of the perovskite material is small, the degree of hysteresis is small and vice versa.



rate research

Read More

Tail state formation in solar cell absorbers leads to a detrimental effect on solar cell performance. Nevertheless, the characterization of the band tailing in experimental semiconductor crystals is generally difficult. In this article, to determine the tail state generation in various solar cell materials, we have developed a quite general theoretical scheme in which the experimental Urbach energy is compared with the absorption edge energy derived from density functional theory (DFT) calculation. For this purpose, the absorption spectra of solar cell materials, including CdTe, CuInSe2 (CISe), CuGaSe2 (CGSe), Cu2ZnSnSe4 (CZTSe), Cu2ZnSnS4 (CZTS) and hybrid perovskites, have been calculated by DFT particularly using very-high-density k meshes. As a result, we find that the tail state formation is negligible in CdTe, CISe, CGSe and hybrid perovskite polycrystals. However, coevaporated CZTSe and CZTS layers exhibit very large Urbach energies, which are far larger than the theoretical counterparts. Based on DFT analysis results, we conclude that the quite large tail state formation observed in the CZTSe and CZTS originates from extensive cation disordering. In particular, even a slight cation substitution is found to generate unusual band fluctuation in CZT(S)Se. In contrast, CH3NH3PbI3 hybrid perovskite shows the sharpest absorption edge theoretically, which agrees with experiment.
Inverted perovskite solar cells (PSCs) using a Cu:NiOx hole transporting layer (HTL) often exhibit stability issues and in some cases J/V hysteresis. In this work, we developed a b{eta}-alanine surface treatment process on Cu:NiOx HTL that provides J/V hysteresis-free, highly efficient, and thermally stable inverted PSCs. The improved device performance due to b{eta}-alanine-treated Cu:NiOx HTL is attributed to the formation of an intimate Cu:NiOx/perovskite interface and reduced charge trap density in the bulk perovskite active layer. The b{eta}-alanine surface treatment process on Cu:NiOx HTL eliminates major thermal degradation mechanisms, providing 40 times increased lifetime performance under accelerated heat lifetime conditions. By using the proposed surface treatment, we report optimized devices with high power conversion efficiency (PCE) (up to 15.51%) and up to 1000 h lifetime under accelerated heat lifetime conditions (60 C, N2).
112 - L. Wu , Y. Zhu , S. Park 2004
Using transmission electron microscopy (TEM) we studied CaCu3Ti4O12, an intriguing material that exhibits a huge dielectric response, up to kilohertz frequencies, over a wide range of temperature. Neither in single crystals, nor in polycrystalline samples, including sintered bulk- and thin-films, did we observe the twin domains suggested in the literature. Nevertheless, in the single crystals, we saw a very high density of dislocations with a Burger vector of [110], as well as regions with cation disorder and planar defects with a displacement vector 1/4[110]. In the polycrystalline samples, we observed many grain boundaries with oxygen deficiency, in comparison with the grain interior. The defect-related structural disorders and inhomogeneity, serving as an internal barrier layer capacitance (IBLC) in a semiconducting matrix, might explain the very large dielectric response of the material. Our TEM study of the structure defects in CaCu3Ti4O12 supports a recently proposed morphological model with percolating conducting regions and blocking regions.
Perovskite semiconductors have demonstrated outstanding external luminescence quantum yields, enabling high power conversion efficiencies (PCE). However, the precise conditions to advance to an efficiency regime above monocrystalline silicon cells are not well understood. Here, we establish a simulation model that well describes efficient p-i-n type perovskite solar cells and a range of different experiments. We then study important device and material parameters and we find that an efficiency regime of 30% can be unlocked by optimizing the built-in potential across the perovskite layer by using either highly doped (10^19 cm-3), thick transport layers (TLs) or ultrathin undoped TLs, e.g. self-assembled monolayers. Importantly, we only consider parameters that have been already demonstrated in recent literature, that is a bulk lifetime of 10 us, interfacial recombination velocities of 10 cm/s, a perovskite bandgap of 1.5 eV and an EQE of 95%. A maximum efficiency of 31% is predicted for a bandgap of 1.4 eV. Finally, we demonstrate that the relatively high mobile ion density does not represent a significant barrier to reach this efficiency regime. Thus, the results of this paper promise continuous PCE improvements until perovskites may become the most efficient single-junction solar cell technology in the near future.
Here we use time-resolved and steady-state optical spectroscopy on state-of-the-art low- and high-bandgap perovskite films for tandems to quantify intrinsic recombination rates and absorption coefficients. We apply these data to calculate the limiting efficiency of perovskite-silicon and all-perovskite two-terminal tandems employing currently available bandgap materials as 42.0 % and 40.8 % respectively. By including luminescence coupling between sub-cells, i.e. the re-emission of photons from the high-bandgap sub-cell and their absorption in the low-bandgap sub-cell, we reveal the stringent need for current matching is relaxed when the high-bandgap sub-cell is a luminescent perovskite compared to calculations that do not consider luminescence coupling. We show luminescence coupling becomes important in all-perovskite tandems when charge carrier trapping rates are < 10$^{6}$ s$^{-1}$ (corresponding to carrier lifetimes longer than 1 ${mu}$s at low excitation densities) in the high-bandgap sub-cell, which is lowered to 10$^{5}$ s$^{-1}$ in the better-bandgap-matched perovskite-silicon cells. We demonstrate luminescence coupling endows greater flexibility in both sub-cell thicknesses, increased tolerance to different spectral conditions and a reduction in the total thickness of light absorbing layers. To maximally exploit luminescence coupling we reveal a key design rule for luminescent perovskite-based tandems: the high-bandgap sub-cell should always have the higher short-circuit current. Importantly, this can be achieved by reducing the bandgap or increasing the thickness in the high-bandgap sub-cell with minimal reduction in efficiency, thus allowing for wider, unstable bandgap compositions (>1.7 eV) to be avoided. Finally, we experimentally visualise luminescence coupling in an all-perovskite tandem device stack through cross-section luminescence images.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا