Do you want to publish a course? Click here

Spectroscopic decomposition of NGC 3521: unveiling the properties of the bulge and disc

152   0   0.0 ( 0 )
 Added by Lodovico Coccato
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the kinematics and the stellar populations of the bulge and disc of the spiral galaxy NGC 3521. At each position in the field of view, we separate the contributions of the bulge and the disc from the total observed spectrum and study their kinematics, age, and metallicities independently. Their properties are clearly distinct: the bulge rotates more slowly, has a higher velocity dispersion, and is less luminous than the disc. We identify three main populations of stars in NGC 3521: old ($geq7$ Gyr), intermediate ($approx$ 3 Gyr), and young ($leq$1 Gyr). The mass and light of NGC 3521 are dominated by the intermediate stellar population. The youngest population contributes mostly to the disc component and its contribution increases with radius. We also study the luminosity-weighed properties of the stars in NGC 3521. Along the photometric major axis, we find: i) no age gradient for the stars in the bulge, and a negative age gradient for the stars in the disc; ii) negative metallicity gradients and sub-solar $alpha$-enhancement for both the bulge and the disc. We propose the following picture for the formation of NGC 3521: initial formation a long time ago ($geq 7$ Gyr), followed by a second burst of star formation or a merger ($approx$ 3 Gyrs ago), which contributed predominantly to the mass-build up of the bulge. Recently ($leq 1$ Gyr), the disc of NGC 3521 experienced an additional episode of star formation that started in the innermost regions.



rate research

Read More

By applying spectroscopic decomposition methods to a sample of MaNGA early-type galaxies, we separate out spatially and kinematically distinct stellar populations, allowing us to explore the similarities and differences between galaxy bulges and discs, and how they affect the global properties of the galaxy. We find that the components have interesting variations in their stellar populations, and display different kinematics. Bulges tend to be consistently more metal rich than their disc counterparts, and while the ages of both components are comparable, there is an interesting tail of younger, more metal poor discs. Bulges and discs follow their own distinct kinematic relationships, both on the plane of the stellar spin parameter, lambda_R, and ellipticity, and in the relation between stellar mass and specific angular momentum, j, with the location of the galaxy as a whole on these planes being determined by how much bulge and disc it contains. As a check of the physical significance of the kinematic decompositions, we also dynamically model the individual galaxy components within the global potential of the galaxy. The resulting components exhibit kinematic parameters consistent with those from the spectroscopic decomposition, and though the dynamical modelling suffers from some degeneracies, the bulges and discs display systematically different intrinsic dynamical properties. This work demonstrates the value in considering the individual components of galaxies rather than treating them as a single entity, which neglects information that may be crucial in understanding where, when and how galaxies evolve into the systems we see today.
We introduce PHI, a fully Bayesian Markov-chain Monte Carlo algorithm designed for the structural decomposition of galaxy images. PHI uses a triple layer approach to effectively and efficiently explore the complex parameter space. Combining this with the use of priors to prevent nonphysical models, PHI offers a number of significant advantages for estimating surface brightness profile parameters over traditional optimisation algorithms. We apply PHI to a sample of synthetic galaxies with SDSS-like image properties to investigate the effect of galaxy properties on our ability to recover unbiased and well constrained structural parameters. In two-component bulge+disc galaxies we find that the bulge structural parameters are recovered less well than those of the disc, particularly when the bulge contributes a lower fraction to the luminosity, or is barely resolved with respect to the pixel scale or PSF. There are few systematic biases, apart from for bulge+disc galaxies with large bulge Sersic parameter, n. On application to SDSS images, we find good agreement with other codes, when run on the same images with the same masks, weights, and PSF. Again, we find that bulge parameters are the most difficult to constrain robustly. Finally, we explore the use of a Bayesian Information Criterion (BIC) method for deciding whether a galaxy has one- or two-components.
A new method for spectroscopic bulge-disc decomposition is presented, in which the spatial light profile in a two-dimensional spectrum is decomposed wavelength-by-wavelength into bulge and disc components, allowing separate one-dimensional spectra for each component to be constructed. This method has been applied to observations of a sample of nine S0s in the Fornax Cluster in order to obtain clean high-quality spectra of their individual bulge and disc components. So far this decomposition has only been fully successful when applied to galaxies with clean light profiles, consequently limiting the number of galaxies that could be separated into bulge and disc components. Lick index stellar population analysis of the component spectra reveals that in those galaxies where the bulge and disc could be distinguished, the bulges have systematically higher metallicities and younger stellar populations than the discs. This correlation is consistent with a picture in which S0 formation comprises the shutting down of star formation in the disc accompanied by a final burst of star formation in the bulge. The variation in spatial-fit parameters with wavelength also allows us to measure approximate colour gradients in the individual components. Such gradients were detected separately in both bulges and discs, in the sense that redder light is systematically more centrally concentrated in all components. However, a search for radial variations in the absorption line strengths determined for the individual components revealed that they are absent from the vast majority of S0 discs and bulges. The absence of gradients in line indices for most galaxies implies that the colour gradient cannot be attributed to age or metallicity variations, and is therefore most likely associated with varying degrees of obscuration by dust.
To ascertain whether photometric decompositions of galaxies into bulges and disks are astrophysically meaningful, we have developed a new technique to decompose spectral data cubes into separate bulge and disk components, subject only to the constraint that they reproduce the conventional photometric decomposition. These decompositions allow us to study the kinematic and stellar population properties of the individual components and how they vary with position, in order to assess their plausibility as discrete elements, and to start to reconstruct their distinct formation histories. An initial application of this method to CALIFA integral field unit observations of three isolated S0 galaxies confirms that in regions where both bulge and disc contribute significantly to the flux they can be physically and robustly decomposed into a rotating dispersion-dominated bulge component, and a rotating low-dispersion disc component. Analysis of the resulting stellar populations shows that the bulges of these galaxies have a range of ages relative to their discs, indicating that a variety of processes are necessary to describe their evolution. This simple test case indicates the broad potential for extracting from spectral data cubes the full spectral data of a wide variety of individual galaxy components, and for using such decompositions to understand the interplay between these various structures, and hence how such systems formed.
88 - P. Di Matteo 2016
The Galactic bulge, that is the prominent out-of-plane over-density present in the inner few kiloparsecs of the Galaxy, is a complex structure, as the morphology, kinematics, chemistry and ages of its stars indicate. To understand the nature of its main components -- those at [Fe/H] >~ -1 dex -- it is necessary to make an inventory of the stellar populations of the Galactic disc(s), and of their borders : the chemistry of the disc at the solar vicinity, well known from detailed studies of stars over many years, is not representative of the whole disc. This finding, together with the recent revisions of the mass and sizes of the thin and thick discs, constitutes a major step in understanding the bulge complexity. N-body models of a boxy/peanut-shaped bulge formed from a thin disc through the intermediary of a bar have been successful in interpreting a number of global properties of the Galactic bulge, but they fail in reproducing the detailed chemo-kinematic relations satisfied by its components and their morphology. It is only by adding the thick disc to the picture that we can understand the nature of the Galactic bulge.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا