No Arabic abstract
We introduce PHI, a fully Bayesian Markov-chain Monte Carlo algorithm designed for the structural decomposition of galaxy images. PHI uses a triple layer approach to effectively and efficiently explore the complex parameter space. Combining this with the use of priors to prevent nonphysical models, PHI offers a number of significant advantages for estimating surface brightness profile parameters over traditional optimisation algorithms. We apply PHI to a sample of synthetic galaxies with SDSS-like image properties to investigate the effect of galaxy properties on our ability to recover unbiased and well constrained structural parameters. In two-component bulge+disc galaxies we find that the bulge structural parameters are recovered less well than those of the disc, particularly when the bulge contributes a lower fraction to the luminosity, or is barely resolved with respect to the pixel scale or PSF. There are few systematic biases, apart from for bulge+disc galaxies with large bulge Sersic parameter, n. On application to SDSS images, we find good agreement with other codes, when run on the same images with the same masks, weights, and PSF. Again, we find that bulge parameters are the most difficult to constrain robustly. Finally, we explore the use of a Bayesian Information Criterion (BIC) method for deciding whether a galaxy has one- or two-components.
To ascertain whether photometric decompositions of galaxies into bulges and disks are astrophysically meaningful, we have developed a new technique to decompose spectral data cubes into separate bulge and disk components, subject only to the constraint that they reproduce the conventional photometric decomposition. These decompositions allow us to study the kinematic and stellar population properties of the individual components and how they vary with position, in order to assess their plausibility as discrete elements, and to start to reconstruct their distinct formation histories. An initial application of this method to CALIFA integral field unit observations of three isolated S0 galaxies confirms that in regions where both bulge and disc contribute significantly to the flux they can be physically and robustly decomposed into a rotating dispersion-dominated bulge component, and a rotating low-dispersion disc component. Analysis of the resulting stellar populations shows that the bulges of these galaxies have a range of ages relative to their discs, indicating that a variety of processes are necessary to describe their evolution. This simple test case indicates the broad potential for extracting from spectral data cubes the full spectral data of a wide variety of individual galaxy components, and for using such decompositions to understand the interplay between these various structures, and hence how such systems formed.
We study the kinematics and the stellar populations of the bulge and disc of the spiral galaxy NGC 3521. At each position in the field of view, we separate the contributions of the bulge and the disc from the total observed spectrum and study their kinematics, age, and metallicities independently. Their properties are clearly distinct: the bulge rotates more slowly, has a higher velocity dispersion, and is less luminous than the disc. We identify three main populations of stars in NGC 3521: old ($geq7$ Gyr), intermediate ($approx$ 3 Gyr), and young ($leq$1 Gyr). The mass and light of NGC 3521 are dominated by the intermediate stellar population. The youngest population contributes mostly to the disc component and its contribution increases with radius. We also study the luminosity-weighed properties of the stars in NGC 3521. Along the photometric major axis, we find: i) no age gradient for the stars in the bulge, and a negative age gradient for the stars in the disc; ii) negative metallicity gradients and sub-solar $alpha$-enhancement for both the bulge and the disc. We propose the following picture for the formation of NGC 3521: initial formation a long time ago ($geq 7$ Gyr), followed by a second burst of star formation or a merger ($approx$ 3 Gyrs ago), which contributed predominantly to the mass-build up of the bulge. Recently ($leq 1$ Gyr), the disc of NGC 3521 experienced an additional episode of star formation that started in the innermost regions.
By applying spectroscopic decomposition methods to a sample of MaNGA early-type galaxies, we separate out spatially and kinematically distinct stellar populations, allowing us to explore the similarities and differences between galaxy bulges and discs, and how they affect the global properties of the galaxy. We find that the components have interesting variations in their stellar populations, and display different kinematics. Bulges tend to be consistently more metal rich than their disc counterparts, and while the ages of both components are comparable, there is an interesting tail of younger, more metal poor discs. Bulges and discs follow their own distinct kinematic relationships, both on the plane of the stellar spin parameter, lambda_R, and ellipticity, and in the relation between stellar mass and specific angular momentum, j, with the location of the galaxy as a whole on these planes being determined by how much bulge and disc it contains. As a check of the physical significance of the kinematic decompositions, we also dynamically model the individual galaxy components within the global potential of the galaxy. The resulting components exhibit kinematic parameters consistent with those from the spectroscopic decomposition, and though the dynamical modelling suffers from some degeneracies, the bulges and discs display systematically different intrinsic dynamical properties. This work demonstrates the value in considering the individual components of galaxies rather than treating them as a single entity, which neglects information that may be crucial in understanding where, when and how galaxies evolve into the systems we see today.
With a large sample of bright, low-redshift galaxies with optical$-$near-IR imaging from the GAMA survey we use bulge-disc decompositions to understand the wavelength-dependent behavior of single-Sersic structural measurements. We denote the variation in single-Sersic index with wavelength as $mathcal{N}$, likewise for effective radius we use $mathcal{R}$. We find that most galaxies with a substantial disc, even those with no discernable bulge, display a high value of $mathcal{N}$. The increase in Sersic index to longer wavelengths is therefore intrinsic to discs, apparently resulting from radial variations in stellar population and/or dust reddening. Similarly, low values of $mathcal{R}$ ($<$ 1) are found to be ubiquitous, implying an element of universality in galaxy colour gradients. We also study how bulge and disc colour distributions vary with galaxy type. We find that, rather than all bulges being red and all discs being blue in absolute terms, both components become redder for galaxies with redder total colours. We even observe that bulges in bluer galaxies are typically bluer than discs in red galaxies, and that bulges and discs are closer in colour for fainter galaxies. Trends in total colour are therefore not solely due to the colour or flux dominance of the bulge or disc.
We present a two-dimensional (2-D) fitting algorithm (GALFIT) designed to extract structural components from galaxy images, with emphasis on closely modeling light profiles of spatially well-resolved, nearby galaxies observed with the Hubble Space Telescope. Our algorithm improves on previous techniques in two areas, by being able to simultaneously fit a galaxy with an arbitrary number of components, and with optimization in computation speed, suited for working on large galaxy images. We use 2-D models such as the ``Nuker law, the Sersic (de Vaucouleurs) profile, an exponential disk, and Gaussian or Moffat functions. The azimuthal shapes are generalized ellipses that can fit disky and boxy components. Many galaxies with complex isophotes, ellipticity changes, and position-angle twists can be modeled accurately in 2-D. When examined in detail, we find that even simple-looking galaxies generally require at least three components to be modeled accurately, rather than the one or two components more often employed. We illustrate this by way of 7 case studies, which include regular and barred spiral galaxies, highly disky lenticular galaxies, and elliptical galaxies displaying various levels of complexities. A useful extension of this algorithm is to accurately extract nuclear point sources in galaxies. We compare 2-D and 1-D extraction techniques on simulated images of galaxies having nuclear slopes with different degrees of cuspiness, and we then illustrate the application of the program to several examples of nearby galaxies with weak nuclei.