Do you want to publish a course? Click here

Numerical optimization of the extraction efficiency of a quantum-dot based single-photon emitter into a single-mode fiber

249   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a numerical method for the accurate and efficient simulation of strongly localized light sources, such as quantum dots, embedded in dielectric micro-optical structures. We apply the method in order to optimize the photon extraction efficiency of a single-photon emitter consisting of a quantum dot embedded into a multi-layer stack with further lateral structures. Furthermore, we present methods to study the robustness of the extraction efficiency with respect to fabrication errors and defects.



rate research

Read More

Future quantum technology relies crucially on building quantum networks with high fidelity. To achieve this challenging goal, it is of utmost importance to connect single quantum systems in a way such that their emitted single-photons overlap with the highest possible degree of coherence. This requires perfect mode overlap of the emitted light of different emitters, which necessitates the use of single mode fibers. Here we present an advanced manufacturing approach to accomplish this task: we combine 3D printed complex micro-optics such as hemispherical and Weierstrass solid immersion lenses as well as total internal reflection solid immersion lenses on top of single InAs quantum dots with 3D printed optics on single mode fibers and compare their key features. Interestingly, the use of hemispherical solid immersion lenses further increases the localization accuracy of the emitters to below 1 nm when acquiring micro-photoluminescence maps. The system can be joined together and permanently fixed. This integrated system can be cooled by dipping into liquid helium, by a Stirling cryocooler or by a closed-cycle helium cryostat without the necessity for optical windows, as all access is through the integrated single mode fiber. We identify the ideal optical designs and present experiments that prove excellent high-rate single-photon emission by high-contrast Hanbury Brown and Twiss experiments.
User-friendly single-photon sources with high photon-extraction efficiency are crucial building blocks for photonic quantum applications. For many of these applications, such as long-distance quantum key distribution, the use of single-mode optical fibers is mandatory, which leads to stringent requirements regarding the device design and fabrication. We report on the on-chip integration of a quantum dot microlens with a 3D-printed micro-objective in combination with a single-mode on-chip fiber coupler. The practical quantum device is realized by deterministic fabrication of the QD-microlens via in-situ electron-beam lithography and 3D two-photon laser writing of the on-chip micro-objective and fiber-holder. The QD with microlens is an efficient single-photon source, whose emission is collimated by the on-chip micro-objective. A second polymer microlens is located at the end facet of the single-mode fiber and ensures that the collimated light is efficiently coupled into the fiber core. For this purpose, the fiber is placed in the on-chip fiber chuck, which is precisely aligned to the QD-microlens thanks to the sub-$mu$m processing accuracy of high-resolution two-photon direct laser writing. This way, we obtain a fully integrated high-quality quantum device with broadband photon extraction efficiency, a single-mode fiber-coupling efficiency of 26%, a single-photon flux of 1.5 MHz at single-mode fibre output and a multi-photon probability of 13 % under pulsed optical excitation. In addition, the stable design of the developed fiber-coupled quantum device makes it highly attractive for integration into user-friendly plug-and-play quantum applications.
We demonstrate a spectrally broadband and effcient technique for collecting photoluminescence from a single InAs quantum dot directly into a standard single mode optical fiber. In this approach, an optical fiber taper waveguide is placed in contact with a suspended GaAs nanophotonic waveguide with embedded quantum dots, forming an effcient and broadband directional coupler with standard optical fiber input and output. Effcient photoluminescence collection over a wavelength range of tens of nanometers is demonstrated, and a maximum collection effciency of 6.05 % (corresponding single photon rate of 3.0 MHz) into a single mode optical fiber was estimated for a single quantum dot exciton.
Solid-state single-photon emitters (SPEs) such as the bright, stable, room-temperature defects within hexagonal boron nitride (hBN) are of increasing interest for quantum information science applications. To date, the atomic and electronic origins of SPEs within hBN are not well understood, and no studies have reported photochromism or explored cross-correlations between hBN SPEs. Here, we combine irradiation-time dependent measures of quantum efficiency and microphotoluminescence (${mu}$PL) spectroscopy with two-color Hanbury Brown-Twiss interferometry to enable an investigation of the electronic structure of hBN defects. We identify photochromism in a hBN SPE that exhibits cross-correlations and correlated quantum efficiencies between the emission of its two zero-phonon lines.
Single-photon sources based on semiconductor quantum dots have emerged as an excellent platform for high efficiency quantum light generation. However, scalability remains a challenge since quantum dots generally present inhomogeneous characteristics. Here we benchmark the performance of fifteen deterministically fabricated single-photon sources. They display an average indistinguishability of 90.6 +/- 2.8 % with a single-photon purity of 95.4 +/- 1.5 % and high homogeneity in operation wavelength and temporal profile. Each source also has state-of-the-art brightness with an average first lens brightness value of 13.6 +/- 4.4 %. Whilst the highest brightness is obtained with a charged quantum dot, the highest quantum purity is obtained with neutral ones. We also introduce various techniques to identify the nature of the emitting state. Our study sets the groundwork for large-scale fabrication of identical sources by identifying the remaining challenges and outlining solutions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا