Do you want to publish a course? Click here

Enhanced Superconducting Transition Temperature in Electroplated Rhenium

214   0   0.0 ( 0 )
 Added by David Pappas
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that electroplated Re films in multilayers with noble metals such as Cu, Au, and Pd have an enhanced superconducting critical temperature relative to previous methods of preparing Re. The dc resistance and magnetic susceptibility indicate a critical temperature of approximately 6 K. Magnetic response as a function of field at 1.8 K demonstrates type-II superconductivity, with an upper critical field on the order of 2.5 T. Critical current densities greater than 10^7 A/m^2 were measured above liquid-helium temperature. Low-loss at radio frequency was obtained below the critical temperature for multilayers deposited onto resonators made with Cu traces on commercial circuit boards. These electroplated superconducting films can be integrated into a wide range of standard components for low-temperature electronics.

rate research

Read More

Suspended superconducting nanostructures of MoRe $50%/50%$ by weight are fabricated employing commonly used fabrication steps in micro- and nano-meter scale devices followed by wet-etching with Hydro-fluoric acid of a SiO$_2$ sacrificial layer. Suspended superconducting channels as narrow as $50,rm{nm}$ and length $3,rm{mu m}$ have a critical temperature of $approx 6.5,rm{K}$, which can increase by $0.5rm{K}$ upon annealing at $400,^{circ}mathrm{C}$. A detailed study of the dependence of the superconducting critical current and critical temperature upon annealing and in devices with different channel width reveals that desorption of contaminants is responsible for the improved superconducting properties. These findings pave the way for the development of superconducting electromechanical devices using standard fabrication techniques.
Strontium titanate is a low-temperature, non-Bardeen-Cooper-Schrieffer superconductor that superconducts to carrier concentrations lower than in any other system and exhibits avoided ferroelectricity at low temperatures. Neither the mechanism of superconductivity in strontium titanate nor the importance of the structure and dielectric properties for the superconductivity are well understood. We studied the effects of twin structure on superconductivity in a 5.5-nm-thick layer of niobium-doped SrTiO$_{3}$ embedded in undoped SrTiO$_{3}$. We used a scanning superconducting quantum interference device susceptometer to image the local diamagnetic response of the sample as a function of temperature. We observed regions that exhibited a superconducting transition temperature $T_{c}$ $gtrsim$ 10% higher than the temperature at which the sample was fully superconducting. The pattern of these regions varied spatially in a manner characteristic of structural twin domains. Our results emphasize that the anisotropic dielectric properties of SrTiO$_{3}$ are important for its superconductivity, and need to be considered in any theory of the mechanism of the superconductivity.
By means of first-principles calculations, we studied stable lattice structures and estimated superconducting transition temperature of CaSi$_2$ at high pressure. Our simulation showed stability of the AlB$_2$ structure in a pressure range above 17 GPa. In this structure, doubly degenerated optical phonon modes, in which the neighboring silicon atoms oscillate alternately in a silicon plane, show prominently strong interaction with the conduction electrons. In addition there exists a softened optical mode (out-of-plan motion of silicon atoms), whose strength of the electron-phonon interaction is nearly the same as the above mode. The density of states at the Fermi level in the AlB$_2$ structure is higher than that in the trigonal structure. These findings and the estimation of the transition temperature strongly suggest that higher $T_{rm c}$ is expected in the AlB$_2$ structure than the trigonal structures which are known so far.
Competition between superconducting and ferromagnetic ordering at interfaces between ferromagnets (F) and superconductors (S) gives rise to several proximity effects such as odd-triplet superconductivity and spin-polarized supercurrents. A prominent example of an S/F proximity effect is the spin switch effect (SSE) observed in S/F/N/F superconducting spin-valve multilayers, in which the superconducting transition temperature T$_c$ is controlled by the angle $phi$ between the magnetic moments of the F layers separated by a nonmagnetic metallic spacer N. Here we present an experimental study of SSE in Nb/Co/Cu/Co/CoO$_x$ nanowires measured as a function of bias current flowing in the plane of the layers. These measurements reveal an unexpected dependence of T$_c(phi)$ on the bias current: T$_c(pi)$--T$_c(0)$ changes sign with increasing current bias. We attribute the origin of this bias dependence of the SSE to a spin Hall current flowing perpendicular to the plane of the multilayer, which suppresses T$_c$ of the multilayer. The bias dependence of SSE can be important for hybrid F/S devices such as those used in cryogenic memory for superconducting computers as device dimensions are scaled down to the nanometer length scale.
The superconducting critical temperature, $T_{rm c}$, of FeSe can be dramatically enhanced by intercalation of a molecular spacer layer. Here we report on a $^{77}$Se, $^7$Li and $^1$H nuclear magnetic resonance (NMR) study of the powdered hyper-interlayer-expanded Li$_{x}($C$_2$H$_8$N$_2$)$_y$Fe$_{2-z}$Se$_2$ with a nearly optimal $T_{rm c}=45$~K. The absence of any shift in the $^7$Li and $^1$H NMR spectra indicates a complete decoupling of interlayer units from the conduction electrons in FeSe layers, whereas nearly temperature-independent $^7$Li and $^1$H spin-lattice relaxation rates are consistent with the non-negligible concentration of Fe impurities present in the insulating interlayer space. On the other hand, strong temperature dependence of $^{77}$Se NMR shift and spin-lattice relaxation rate, $1/^{77}T_1$, is attributed to the hole-like bands close to the Fermi energy. $1/^{77}T_1$ shows no additional anisotropy that would account for the onset of electronic nematic order down to $T_{rm c}$. Similarly, no enhancement in $1/^{77}T_1$ due to the spin fluctuations could be found in the normal state. Yet, a characteristic power-law dependence $1/^{77}T_1propto T^{4.5}$ still comply with the Cooper pairing mediated by spin fluctuations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا