Do you want to publish a course? Click here

Sulfate Radical Oxidation of Aromatic Contaminants: A Detailed Assessment of Density Functional Theory and High-Level Quantum Chemical Methods

111   0   0.0 ( 0 )
 Added by Bryan Wong
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Advanced oxidation processes that utilize highly oxidative radicals are widely used in water reuse treatment. In recent years, the application of sulfate radical (SO$_4cdot^-$) as a promising oxidant for water treatment has gained increasing attention. To understand the efficiency of SO$_4cdot^-$ in the degradation of organic contaminants in wastewater effluent, it is important to be able to predict the reaction kinetics of various SO$_4cdot^-$-driven oxidation reactions. In this study, we utilize density functional theory (DFT) and high-level wavefunction-based methods (including computationally-intensive coupled cluster methods), to explore the activation energies and kinetic rates of SO$_4cdot^-$-driven oxidation reactions on a series of benzene-derived contaminants. These high-level calculations encompassed a wide set of reactions including 110 forward/reverse reactions and 5 different computational methods in total. Based on the high-level coupled-cluster quantum calculations, we find that the popular M06-2X DFT functional is significantly more accurate for HO-additions than for SO$_4cdot^-$ reactions. Most importantly, we highlight some of the limitations and deficiencies of other computational methods, and we recommend the use of high-level quantum calculations to spot-check environmental chemistry reactions that may lie outside the training set of the M06-2X functional, particularly for water oxidation reactions that involve SO$_4cdot^-$ and other inorganic species.



rate research

Read More

The treatment of atomic anions with Kohn-Sham density functional theory (DFT) has long been controversial since the highest occupied molecular orbital (HOMO) energy, $E_{HOMO}$, is often calculated to be positive with most approximate density functionals. We assess the accuracy of orbital energies and electron affinities for all three rows of elements in the periodic table (H-Ar) using a variety of theoretical approaches and customized basis sets. Among all of the theoretical methods studied here, we find that a non-empirically tuned range-separated approach (constructed to satisfy DFT-Koopmans theorem for the anionic electron system) provides the best accuracy for a variety of basis sets - even for small basis sets where most functionals typically fail. Previous approaches to solve this conundrum of positive $E_{HOMO}$ values have utilized non-self-consistent methods; however electronic properties, such as electronic couplings/gradients (which require a self-consistent potential and energy), become ill-defined with these approaches. In contrast, the non-empirically tuned range-separated procedure used here yields well-defined electronic couplings/gradients and correct $E_{HOMO}$ values since both the potential and resulting electronic energy are computed self-consistently. Orbital energies and electron affinities are further analyzed in the context of the electronic energy as a function of electronic number (including fractional numbers of electrons) to provide a stringent assessment of self-interaction errors for these complex anion systems.
231 - K. Kokko , A. Nagy , J. Huhtala 2020
Using a hydrogen molecule as a test system we demonstrate how to compute the effective potential according to the formalism of the new density functional theory (DFT), in which the basic variable is the set of spherically averaged densities instead of the total density, used in the traditional DFT. The effective potential together the external potential, nuclear Coulomb potential, can be substituted in the Schrodinger like differential equation to obtain the spherically averaged electron density of the system. In the new method instead of one three-dimensional low symmetry equation one has to solve as many spherically symmetric equations as there are atoms in the system.
83 - D. L. Huber 2018
We investigate the linear behavior in the 2+ ion concentration observed in the double photoionization of a variety of aromatic molecules. We show it arises when the photoelectrons are emitted simultaneously. Neglecting the momentum of the incoming photon and the momentum transferred to the molecule, it follows that the momenta of the individual photoelectrons are oppositely directed and equal in magnitude. Under steady-state conditions, the ion concentration is proportional to the rate at which the ions are created which, in turn, varies as the product of the densities of states of the individual electrons. The latter vary as the square root of the kinetic energy, leading to overall linear behavior. The origin of the linear behavior in pyrrole and related molecules is attributed to the presence of atoms that destroy the periodicity of a hypothetical carbon loop. In contrast, the resonant behavior observed in pyridine and related molecules, where a fraction of the CH pairs is replaced by N atoms, is associated with electron transfer between the nitrogen atoms and carbon atoms that preserves the periodicity of the closed loop.
The catalytic activities of the atomic Y-, Ru-, At-, In-, Pd-, Ag-, Pt-, and Os- ions have been investigated theoretically using the atomic Au- ion as the benchmark for the selective partial oxidation of methane to methanol without CO2 emission. Dispersion-corrected density-functional theory has been used for the investigation. From the energy barrier calculations and the thermodynamics of the reactions, we conclude that the catalytic effect of the atomic Ag-, At-, Ru-, and Os- ions is higher than that of the atomic Au- ion catalysis of CH4 conversion to methanol. By controlling the temperature around 290K (Os-), 300K (Ag-), 310K (At-), 320K (Ru-) and 325K (Au-) methane can be completely oxidized to methanol without the emission of CO2. We conclude by recommending the investigation of the catalytic activities of combinations of the above negative ions for significant enhancement of the selective partial oxidation of methane to methanol.
We present a systematic study of the photo-absorption spectra of various Si$_{n}$H$_{m}$ clusters (n=1-10, m=1-14) using the time-dependent density functional theory (TDDFT). The method uses a real-time, real-space implementation of TDDFT involving full propagation of the time dependent Kohn-Sham equations. Our results for SiH$_{4}$ and Si$_{2}$H$_{6}$ show good agreement with the earlier calculations and experimental data. We find that for small clusters (n<7) the photo-absorption spectrum is atomic-like while for the larger clusters it shows bulk-like behaviour. We study the photo-absorption spectra of silicon clusters as a function of hydrogenation. For single hydrogenation, we find that in general, the absorption optical gap decreases and as the number of silicon atoms increase the effect of a single hydrogen atom on the optical gap diminishes. For further hydrogenation the optical gap increases and for the fully hydrogenated clusters the optical gap is larger compared to corresponding pure silicon clusters.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا