Do you want to publish a course? Click here

Full-Duplex Communications: Performance in Ultra-Dense Small-Cell Wireless Networks

97   0   0.0 ( 0 )
 Added by Animesh Yadav
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Theoretically, full-duplex (FD) communications can double the spectral-efficiency (SE) of a wireless link if the problem of self-interference (SI) is completely eliminated. Recent developments towards SI cancellation techniques have allowed to realize the FD communications on low-power transceivers, such as small-cell (SC) base stations. Consequently, the FD technology is being considered as a key enabler of 5G and beyond networks. In the context of 5G, FD communications have been initially investigated in a single SC and then into multiple SC environments. Due to FD operations, a single SC faces residual SI and intra-cell co-channel interference (CCI), whereas multiple SCs face additional inter-cell CCI, which grows with the number of neighboring cells. The surge of interference in the multi-cell environment poses the question of the feasibility of FD communications. In this article, we first review the FD communications in single and multiple SC environments and then provide the state-of-the-art for the CCI mitigation techniques, as well as FD feasibility studies in a multi-cell environment. Further, through numerical simulations, the SE performance gain of the FD communications in ultra-dense massive multiple input multiple-output enabled millimeter wave SCs is presented. Finally, potential open research challenges of multi-cell FD communications are highlighted.



rate research

Read More

Recent achievement in self-interference cancellation algorithms enables potential application of full-duplex (FD) in 5G radio access systems. The exponential growth of data traffic in 5G can be supported by having more spectrum and higher spectral efficiency. FD communication promises to double the spectral efficiency by enabling simultaneous uplink and downlink transmissions in the same frequency band. Yet for cellular access network with FD base stations (BS) serving multiple users (UE), additional BS-to-BS and UE-to-UE interferences due to FD operation could diminish the performance gain if not tackled properly. In this article, we address the practical system design aspects to exploit FD gain at network scale. We propose efficient reference signal design, low-overhead channel state information feedback and signalling mechanisms to enable FD operation, and develop low-complexity power control and scheduling algorithms to effectively mitigate new interference introduced by FD operation. We extensively evaluate FD network-wide performance in various deployment scenarios and traffic environment with detailed LTE PHY/MAC modelling. We demonstrate that FD can achieve not only appreciable throughput gains (1.9x), but also significant transmission latency reduction~(5-8x) compared with the half-duplex system.
Non-orthogonal multiple access (NOMA) is an interesting concept to provide higher capacity for future wireless communications. In this article, we consider the feasibility and benefits of combining full-duplex operation with NOMA for modern communication systems. Specifically, we provide a comprehensive overview on application of full-duplex NOMA in cellular networks, cooperative and cognitive radio networks, and characterize gains possible due to full-duplex operation. Accordingly, we discuss challenges, particularly the self-interference and inter-user interference and provide potential solutions to interference mitigation and quality-of-service provision based on beamforming, power control, and link scheduling. We further discuss future research challenges and interesting directions to pursue to bring full-duplex NOMA into maturity and use in practice.
We consider a multi-carrier and densely deployed small cell network, where small cells are powered by renewable energy source and operate in a full-duplex mode. We formulate an energy and traffic aware resource allocation optimization problem, where a joint design of the beamformers, power and sub-carrier allocation, and users scheduling is proposed. The problem minimizes the sum data buffer lengths of each user in the network by using the harvested energy. A practical uplink user rate-dependent decoding energy consumption is included in the total energy consumption at the small cell base stations. Hence, harvested energy is shared with both downlink and uplink users. Owing to the non-convexity of the problem, a faster convergence sub-optimal algorithm based on successive parametric convex approximation framework is proposed. The algorithm is implemented in a distributed fashion, by using the alternating direction method of multipliers, which offers not only the limited information exchange between the base stations, but also fast convergence. Numerical results advocate the redesigning of the resource allocation strategy when the energy at the base station is shared among the downlink and uplink transmissions.
In this paper, the impact of in-band full-duplex (IBFD) wireless communications on secret key generation via physical layer channel state information is investigated. A key generation strategy for IBFD wireless devices to increase the rate of generated secret keys over multipath fading channels is proposed. Conventionally, due to the half-duplex (HD) constraint on wireless transmissions, sensing simultaneous reciprocal channel measurements is not possible, which leads to a degraded key generation rate. However, with the advent of IBFD wireless devices, the legitimate nodes can sense the shared wireless link simultaneously at the possible cost of a self-interference (SI) channel estimation and some residual self-interference (RSI). As we demonstrate, with HD correlated observations the key rate is upper bounded by a constant, while with IBFD the key rate is only limited by the SI cancellation performance and is in general greater than that of its HD counterpart. Our analysis shows that with reasonable levels of SI cancellation, in the high SNR regime the key rate of IBFD is much higher, while in low SNRs, the HD system performs better. Finally, the key rate loss due to the overhead imposed by the SI channel estimation phase is discussed.
75 - Zhiqiang Xiao , Yong Zeng 2021
Integrated sensing and communication (ISAC) is a promising technology to fully utilize the precious spectrum and hardware in wireless systems, which has attracted significant attentions recently. This paper studies ISAC for the important and challenging monostatic setup, where one single ISAC node wishes to simultaneously sense a radar target while communicating with a communication receiver. Different from most existing schemes that rely on either radar-centric half-duplex (HD) pulsed transmission with information embedding that suffers from extremely low communication rate, or communication-centric waveform that suffers from degraded sensing performance, we propose a novel full-duplex (FD) ISAC scheme that utilizes the waiting time of conventional pulsed radars to transmit dedicated communication signals. Compared to radar-centric pulsed waveform with information embedding, the proposed design can drastically increase the communication rate, and also mitigate the sensing eclipsing and near-target blind range issues, as long as the self-interference (SI) is effectively suppressed. On the other hand, compared to communication-centric ISAC waveform, the proposed design has better auto-correlation property as it preserves the classic radar waveform for sensing. Performance analysis is developed by taking into account the residual SI, in terms of the probability of detection and ambiguity function for sensing, as well as the spectrum efficiency for communication. Numerical results are provided to show the significant performance gain of our proposed design over benchmark schemes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا