No Arabic abstract
Integrated sensing and communication (ISAC) is a promising technology to fully utilize the precious spectrum and hardware in wireless systems, which has attracted significant attentions recently. This paper studies ISAC for the important and challenging monostatic setup, where one single ISAC node wishes to simultaneously sense a radar target while communicating with a communication receiver. Different from most existing schemes that rely on either radar-centric half-duplex (HD) pulsed transmission with information embedding that suffers from extremely low communication rate, or communication-centric waveform that suffers from degraded sensing performance, we propose a novel full-duplex (FD) ISAC scheme that utilizes the waiting time of conventional pulsed radars to transmit dedicated communication signals. Compared to radar-centric pulsed waveform with information embedding, the proposed design can drastically increase the communication rate, and also mitigate the sensing eclipsing and near-target blind range issues, as long as the self-interference (SI) is effectively suppressed. On the other hand, compared to communication-centric ISAC waveform, the proposed design has better auto-correlation property as it preserves the classic radar waveform for sensing. Performance analysis is developed by taking into account the residual SI, in terms of the probability of detection and ambiguity function for sensing, as well as the spectrum efficiency for communication. Numerical results are provided to show the significant performance gain of our proposed design over benchmark schemes.
In this article, we study the joint communication and sensing (JCAS) paradigm in the context of millimeter-wave (mm-wave) mobile communication networks. We specifically address the JCAS challenges stemming from the full-duplex operation and from the co-existence of multiple simultaneous beams for communications and sensing purposes. To this end, we first formulate and solve beamforming optimization problems for hybrid beamforming based multiuser multiple-input and multiple-output JCAS systems. The cost function to be maximized is the beamformed power at the sensing direction while constraining the beamformed power at the communications directions, suppressing interuser interference and cancelling full-duplexing related self-interference (SI). We then also propose new transmitter and receiver beamforming solutions for purely analog beamforming based JCAS systems that maximize the beamforming gain at the sensing direction while controlling the beamformed power at the communications direction(s), cancelling the SI as well as eliminating the potential reflection from the communication direction and optimizing the combined radar pattern (CRP). Both closed-form and numerical optimization based formulations are provided. We analyze and evaluate the performance through extensive simulations, and show that substantial gains and benefits in terms of radar transmit gain, CRP, and SI suppression can be achieved with the proposed beamforming methods.
Realizing edge intelligence consists of sensing, communication, training, and inference stages. Conventionally, the sensing and communication stages are executed sequentially, which results in excessive amount of dataset generation and uploading time. This paper proposes to accelerate edge intelligence via integrated sensing and communication (ISAC). As such, the sensing and communication stages are merged so as to make the best use of the wireless signals for the dual purpose of dataset generation and uploading. However, ISAC also introduces additional interference between sensing and communication functionalities. To address this challenge, this paper proposes a classification error minimization formulation to design the ISAC beamforming and time allocation. Globally optimal solution is derived via the rank-1 guaranteed semidefinite relaxation, and performance analysis is performed to quantify the ISAC gain. Simulation results are provided to verify the effectiveness of the proposed ISAC scheme. Interestingly, it is found that when the sensing time dominates the communication time, ISAC is always beneficial. However, when the communication time dominates, the edge intelligence with ISAC scheme may not be better than that with the conventional scheme, since ISAC introduces harmful interference between the sensing and communication signals.
The convergence of radar sensing and communication applications in the terahertz (THz) band has been envisioned as a promising technology, since it incorporates terabit-per-second (Tbps) data transmission and mm-level radar sensing in a spectrum- and cost-efficient manner, by sharing both the frequency and hardware resources. However, the joint THz radar and communication (JRC) system faces considerable challenges, due to the peculiarities of the THz channel and front ends. To this end, the waveform design for THz-JRC systems with ultra-broad bandwidth is investigated in this paper. Firstly, by considering THz-JRC systems based on the co-existence concept, where both functions operate in a time-domain duplex (TDD) manner, a novel multi-subband quasi-perfect (MS-QP) sequence, composed of multiple Zadoff-Chu (ZC) perfect subsequences on different subbands, is proposed for target sensing, which achieves accurate target ranging and velocity estimation, whilst only requiring cost-efficient low-rate analog-to-digital converters (A/Ds) for sequence detection. Furthermore, the root index of each ZC subsequence of the MS-QP sequence is designed to eliminate the influence of doppler shift on the THz radar sensing. Finally, a data-embedded MS-QP (DE-MS-QP) waveform is constructed through time-domain extension of the MS-QP sequence, generating null frequency points on each subband for data transmission. Unlike the THz-JRC system in TDD manner, the proposed DE-MS-QP waveform enables simultaneous interference-free sensing and communication, whilst inheriting all the merits from MS-QP sequences. Numerical results validate the superiority of the proposed waveforms in terms of sensing performance, hardware cost and flexible resource allocation over their conventional counterparts.
In this paper, we study optimal waveform design to maximize mutual information (MI) for a joint communication and (radio) sensing (JCAS, a.k.a., radar-communication) multi-input multi-output (MIMO) downlink system. We consider a typical packet-based signal structure which includes training and data symbols. We first derive the conditional MI for both sensing and communication under correlated channels by considering the training overhead and channel estimation error (CEE). Then, we derive a lower bound for the channel estimation error and optimize the power allocation between the training and data symbols to minimize the CEE. Based on the optimal power allocation, we provide optimal waveform design methods for three scenarios, including maximizing MI for communication only and for sensing only, and maximizing a weighted sum MI for both communication and sensing. We also present extensive simulation results that provide insights on waveform design and validate the effectiveness of the proposed designs.
Recent achievement in self-interference cancellation algorithms enables potential application of full-duplex (FD) in 5G radio access systems. The exponential growth of data traffic in 5G can be supported by having more spectrum and higher spectral efficiency. FD communication promises to double the spectral efficiency by enabling simultaneous uplink and downlink transmissions in the same frequency band. Yet for cellular access network with FD base stations (BS) serving multiple users (UE), additional BS-to-BS and UE-to-UE interferences due to FD operation could diminish the performance gain if not tackled properly. In this article, we address the practical system design aspects to exploit FD gain at network scale. We propose efficient reference signal design, low-overhead channel state information feedback and signalling mechanisms to enable FD operation, and develop low-complexity power control and scheduling algorithms to effectively mitigate new interference introduced by FD operation. We extensively evaluate FD network-wide performance in various deployment scenarios and traffic environment with detailed LTE PHY/MAC modelling. We demonstrate that FD can achieve not only appreciable throughput gains (1.9x), but also significant transmission latency reduction~(5-8x) compared with the half-duplex system.