Do you want to publish a course? Click here

Direct Covalent Chemical Functionalization of Unmodified Two-Dimensional Molybdenum Disulfide

164   0   0.0 ( 0 )
 Added by Elton J. G. Santos
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional semiconducting transition metal dichalcogenides (TMDCs) like molybdenum disulfide (MoS2) are generating significant excitement due to their unique electronic, chemical, and optical properties. Covalent chemical functionalization represents a critical tool for tuning the properties of TMDCs for use in many applications. However, the chemical inertness of semiconducting TMDCs has thus far hindered the robust chemical functionalization of these materials. Previous reports have required harsh chemical treatments or converting TMDCs into metallic phases prior to covalent attachment. Here, we demonstrate the direct covalent functionalization of the basal planes of unmodified semiconducting MoS2 using aryl diazonium salts without any pretreatments. Our approach preserves the semiconducting properties of MoS2, results in covalent C-S bonds, is applicable to MoS2 derived from a range of different synthesis methods, and enables a range of different functional groups to be tethered directly to the MoS2 surface. Using density functional theory calculations including van der Waals interactions and atomic-scale scanning probe microscopy studies, we demonstrate a novel reaction mechanism in which cooperative interactions enable the functionalization to propagate along the MoS2 basal plane. The flexibility of this covalent chemistry employing the diverse aryl diazonium salt family is further exploited to tether active proteins to MoS2, suggesting future biological applications and demonstrating its use as a versatile and powerful chemical platform for enhancing the utility of semiconducting TMDCs



rate research

Read More

Single layer molybdenum disulfide (SLMoS2), a semiconductor possesses intrinsic bandgap and high electron mobility, has attracted great attention due to its unique electronic, optical, mechanical and thermal properties. Although thermal conductivity of SLMoS2 has been widely investigated recently, less studies focus on molybdenum disulfide nanotube (MoS2NT). Here, the comprehensive temperature, size and strain effect on thermal conductivity of MoS2NT are investigated. A chirality-dependent strain effect is identified in thermal conductivity of zigzag nanotube, in which the phonon group velocity can be significantly reduced by strain. Besides, results show that thermal conductivity has a ~T-1 and a ~Lb{eta} relation with temperature from 200 to 400 K and length from 10 to 320 nm, respectively. This work not only provides feasible strategies to modulate the thermal conductivity of MoS2NT, but also offers useful insights into the fundamental mechanisms that govern the thermal conductivity, which can be used for the thermal management of low dimensional materials in optical, electronic and thermoelectrical devices. Introduction.
The current state of the chemical functionalization of three types of single sheet 2D materials, namely, graphene, molybdenum disulfide (MoS2), and black phosphorus (BP) is summarized. Such 2D sheet polymers represent currently an emerging field at the interface of synthetic chemistry, physics, and materials science. Both covalent and non-covalent functionalization of sheet architectures allows for a systematic modification of their properties, i.e. an improvement of solubility and processability, the prevention of re-aggregation or a band gap tuning. Next to successful functionalization concepts also fundamental challenges are addressed. These include the insolubility and polydispersity of most 2D sheet polymers, the development of suitable characterization tools, the identification of effective binding strategies, the chemical activation of the usually rather unreactive basal planes for covalent addend binding, and the regioselectivity of plane addition reactions. Although a number of these questions remain elusive in this review, the first promising concepts to overcome such hurdles have been listed.
Based on a low temperature scanning tunneling microscopy study, we present a direct visualization of a cycloaddition reaction performed for some specific fluorinated maleimide molecules deposited on graphene. These studies showed that the cycloaddition reactions can be carried out on the basal plane of graphene, even when there are no pre-existing defects. In the course of covalently grafting the molecules to graphene, the sp2 conjugation of carbon atoms was broken and local sp3 bonds were created. The grafted molecules perturbed the graphene lattice, generating a standing-wave pattern with an anisotropy which was attributed to a (1,2) cycloaddition, as revealed by T-matrix approximation calculations. DFT calculations showed that while both (1,4) and (1,2) cycloaddition were possible on free standing graphene, only the (1,2) cycloaddition could be obtained for graphene on SiC(0001). Globally averaging spectroscopic techniques, XPS and ARPES, were used to determine the modification in the elemental composition of the samples induced by the reaction, indicating an opening of an electronic gap in graphene.
136 - Y. Shimazu , K. Arai , T. Iwabuchi 2017
The interface between two-dimensional semiconductors and metal contacts is an important topic of research of nanoelectronic devices based on two-dimensional semiconducting materials such as molybdenum disulfide (MoS2). We report transport properties of thin MoS2 flakes in a field-effect transistor geometry with Ti/Au and Al contacts. In contrast to widely used Ti/Au contacts, the conductance of flakes with Al contacts exhibits a smaller gate-voltage dependence, which is consistent with a substantial electron doping effect of the Al contacts. The temperature dependence of two-terminal conductance for the Al contacts is also considerably smaller than for the Ti/Au contacts, in which thermionic emission and thermally assisted tunneling play a dominant role. This result is explained in terms of the assumption that the carrier injection mechanism at an Al contact is dominated by tunneling that is not thermally activated.
The two-dimensional (2D) semiconductor molybdenum disulfide (MoS2) has attracted widespread attention for its extraordinary electrical, optical, spin and valley related properties. Here, we report on spin polarized tunneling through chemical vapor deposited (CVD) multilayer MoS2 (~7 nm) at room temperature in a vertically fabricated spin-valve device. A tunnel magnetoresistance (TMR) of 0.5 - 2 % has been observed, corresponding to spin polarization of 5 - 10 % in the measured temperature range of 300 - 75 K. First principles calculations for ideal junctions results in a tunnel magnetoresistance up to 8 %, and a spin polarization of 26 %. The detailed measurements at different temperatures and bias voltages, and density functional theory calculations provide information about spin transport mechanisms in vertical multilayer MoS2 spin-valve devices. These findings form a platform for exploring spin functionalities in 2D semiconductors and understanding the basic phenomenon that control their performance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا