The treatment of flue gases from power plants and municipal or industrial wastewater using electron beam irradiation technology has been successfully demonstrated in small-scale pilot plants. The beam energy requirement is rather modest, on the order of a few MeV, however the adoption of the technology at an industrial scale requires the availability of high beam power, of the order of 1 MW, in a cost effective way. In this article we present the design of a compact superconducting accelerator capable of delivering a cw electron beam with a current of 1 A and an energy of 1 MeV. The main components are an rf-gridded thermionic gun and a conduction cooled beta= 0.5 elliptical Nb3Sn cavity with dual coaxial power couplers. An engineering and cost analysis shows that the proposed design would result in a processing cost competitive with alternative treatment methods.
Project-X is the proposed high intensity proton facility to be built at Fermilab, US. First stage of the Project-X consists of superconducting linac which will be operated in continuous wave (CW) mode to accelerate the beam from 2.5 MeV to 3 GeV. The operation at CW mode puts high tolerances on the beam line components, particularly on radiofrequency (RF) cavity. The failure of beam line elements at low energy is very critical as it results in mis-match of the beam with the following sections due to different beam parameters than designed parameter. It makes the beam unstable which causes emittance dilution, and ultimately results in beam losses. In worst case, it could affect the reliability of the machine and may lead to the shutdown of the Linac to replace the failed elements. Thus, it is important to study these effects and their compensation to get smooth beam propagation in linac. This paper describes the results of study performed for the failure of RF cavity & solenoid in SSR0 section.
A special beam line for high energy electron radiography is designed, including achromat and imaging systems. The requirement of the angle and position correction on the target from imaging system can be approximately realized by fine tuning the quadrupoles used in the achromat. The imaging system is designed by fully considering the limitation from the laboratory and beam diagnostics devices space. Two kinds of imaging system are designed and both show a good performance of imaging by beam trajectory simulation. The details of the beam optical requirement and optimization design are presented here. The beam line is designed and prepared to install in Tsinghua university linear electron accelerator laboratory for further precise electron radiography experiment study.
A conceptual design is presented of a novel ERL facility for the development and application of the energy recovery technique to linear electron accelerators in the multi-turn, large current and large energy regime. The main characteristics of the powerful energy recovery linac experiment facility (PERLE) are derived from the design of the Large Hadron electron Collider, an electron beam upgrade under study for the LHC, for which it would be the key demonstrator. PERLE is thus projected as a facility to investigate efficient, high current (> 10 mA) ERL operation with three re-circulation passages through newly designed SCRF cavities, at 801.58 MHz frequency, and following deceleration over another three re-circulations. In its fully equipped configuration, PERLE provides an electron beam of approximately 1 GeV energy. A physics programme possibly associated with PERLE is sketched, consisting of high precision elastic electron-proton scattering experiments, as well as photo-nuclear reactions of unprecedented intensities with up to 30 MeV photon beam energy as may be obtained using Fabry-Perot cavities. The facility has further applications as a general technology test bed that can investigate and validate novel superconducting magnets (beam induced quench tests) and superconducting RF structures (structure tests with high current beams, beam loading and transients). Besides a chapter on operation aspects, the report contains detailed considerations on the choices for the SCRF structure, optics and lattice design, solutions for arc magnets, source and injector and on further essential components. A suitable configuration derived from the here presented design concept may next be moved forward to a technical design and possibly be built by an international collaboration which is being established.
The Fermilab Proton Improvement Plan (PIP) was formed in late 2011 to address important and necessary upgrades to the Proton Source machines (Injector line, Linac and Booster). The goal is to increase the proton flux by doubling the Booster beam cycle rate while maintaining the same intensity per cycle, the same uptime, and the same residual activation in the enclosure. For the Linac, the main focus within PIP is to address reliability. One of the main tasks is to replace the present hard-tube modulator used on the 200 MHz RF system. Plans to replace this high power system with a Marx-topology modulator, capable of providing the required waveform shaping to stabilize the accelerating gradient and compensate for beam loading, will be presented, along with development data from the prototype unit.
Project-X is the proposed high intensity proton facility to be built at Fermilab, US. Its Superconducting Linac, to be used at first stage of acceleration, will be operated in continuous wave (CW) mode. The Linac is divided into three sections on the basis of operating frequencies & six sections on the basis of family of RF cavities to be used for the acceleration of beam from 2.5 MeV to 3 GeV. The transition from one section to another can limit the acceptance of the Linac if these are not matched properly. We performed a study to calculate the acceptance of the Linac in both longitudinal and transverse plane. Investigation of most sensitive area which limits longitudinal acceptance and study of influence of failure of beam line elements at critical position, on acceptance are also performed.
G. Ciovati
,J. Anderson
,B. Coriton
.
(2018)
.
"Design of a cw, low energy, high power superconducting linac for environmental applications"
.
Gianluigi Ciovati
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا