Do you want to publish a course? Click here

An outflow in the Seyfert ESO 362-G18 revealed by Gemini-GMOS/IFU Observations

105   0   0.0 ( 0 )
 Added by Pedro K. Humire
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present two-dimensional stellar and gaseous kinematics of the inner 0.7 $times$ 1.2 kpc$^{2}$ of the Seyfert galaxy ESO 362-G18, derived from optical spectra obtained with the GMOS/IFU on the Gemini South telescope at a spatial resolution of $approx$170 pc and spectral resolution of 36 km s$^{-1}$. ESO 362-G18 is a strongly perturbed galaxy of morphological type Sa or S0/a, with a minor merger approaching along the NE direction. Previous studies have shown that the [OIII] emission shows a fan-shaped extension of $approx$ 10arcsec to the SE. We detect the [OIII] doublet, [NII] and H${alpha}$ emission lines throughout our field of view. The stellar kinematics is dominated by circular motions in the galaxy plane, with a kinematic position angle of $approx$137$^{circ}$. The gas kinematics is also dominated by rotation, with kinematic position angles ranging from 122$^{circ}$ to 139$^{circ}$. A double-Gaussian fit to the [OIII]$lambda$5007 and H${alpha}$ lines, which have the highest signal to noise ratios of the emission lines, reveal two kinematic components: (1) a component at lower radial velocities which we interpret as gas rotating in the galactic disk; and (2) a component with line of sight velocities 100-250 km s$^{-1}$ higher than the systemic velocity, interpreted as originating in the outflowing gas within the AGN ionization cone. We estimate a mass outflow rate of 7.4 $times$ 10$^{-2}$ M$_{odot}$ yr$^{-1}$ in the SE ionization cone (this rate doubles if we assume a biconical configuration), and a mass accretion rate on the supermassive black hole (SMBH) of 2.2 $times$ 10$^{-2}$ M$_{odot}$ yr$^{-1}$. The total ionized gas mass within $sim$84 pc of the nucleus is 3.3 $times$ 10$^{5}$ M$_{odot}$; infall velocities of $sim$34 km s$^{-1}$ in this gas would be required to feed both the outflow and SMBH accretion.



rate research

Read More

We present a detailed spectral analysis of the joint XMM-Newton and NuSTAR observations of the active galactic nuclei (AGN) in the Seyfert 1.5 Galaxy ESO 362-G18. The broadband ($0.3mbox{--}79$ keV) spectrum shows the presence of a power-law continuum with a soft excess below $2$ keV, iron K$alpha$ emission ($sim 6.4$ keV), and a Compton hump (peaking at $sim 20$ keV). We find that the soft excess can be modeled by two different possible scenarios: a warm ($kT_mathrm{e}sim0.2$ keV) and optically thick ($tausim34$) Comptonizing corona; or with relativistically-blurred reflection off a high-density ($log{[n_mathrm{e}/mathrm{cm}^{-3}]}>18.3$) inner disk. These two models cannot be easily distinguished solely from their fit statistics. However, the low temperature ($kT_mathrm{e}sim20$ keV) and the thick optical depth ($tausim5$) of the hot corona required by the warm corona scenario are uncommon for AGNs. We also fit a hybrid model, which includes both disk reflection and a warm corona. Unsurprisingly, as this is the most complex of the models considered, this provides the best fit, and more reasonable coronal parameters. In this case, the majority of the soft excess flux arises in the warm corona component. However, based on recent simulations of warm coronae, it is not clear whether such a structure can really exist at the low accretion rates relevant for ESO 362-G18 ($dot{m}sim0.015$). This may therefore argue in favor of a scenario in which the soft excess is instead dominated by the relativistic reflection. Based on this model, we find that the data would require a compact hot corona ($hsim3,R_mathrm{Horizon}$) around a highly spinning ($a_star>0.927$) black hole.
Deep narrow-band HST imaging of the iconic spiral galaxy M101 has revealed over a thousand new Wolf Rayet (WR) candidates. We report spectrographic confirmation of 10 HeII emission line sources hosting 15 WR stars. We find WR stars present at both sub- and super-solar metalicities with WC stars favouring more metal-rich regions compared to WN stars. We investigate the association of WR stars with HII regions using archival HST imaging and conclude that the majority of WR stars are in or associated with HII regions. Of the 10 emission lines sources, only one appears to be unassociated with a star-forming region. Our spectroscopic survey provides confidence that our narrow-band photometric candidates are in fact bonafide WR stars, which will allow us to characterise the progenitors of any core-collapse supernovae that erupt in the future in M101.
We present Gemini Multi-Object Spectrograph (GMOS) Integral field Unit (IFU), Very Large Array (VLA) and Hubble Space Telescope (HST) observations of the OH Megamaser (OHM) galaxy IRASF23199+0123. Our observations show that this system is an interacting pair, with two OHM sources associated to the eastern (IRAS23199E) member. The two members of the pair present somewhat extended radio emission at 3 and 20~cm, with flux peaks at each nucleus. The GMOS-IFU observations cover the inner $sim$6kpc of IRAS23199E at a spatial resolution of 2.3~kpc. The GMOS-IFU flux distributions in H$alpha$ and [NII]$lambda$6583 are similar to that of an HST [NII]+H$alpha$ narrow-band image, being more extended along the northeast-southwest direction, as also observed in the continuum HST F814W image. The GMOS-IFU H$alpha$ flux map of IRAS23199E shows three extranuclear knots attributed to star-forming complexes. We have discovered a Seyfert 1 nucleus in this galaxy, as its nuclear spectrum shows an unresolved broad (FWHM$approx$2170 kms$^{-1}$) double-peaked H$alpha$ component, from which we derive a black hole mass of M$_{BH}$= 3.8$^{+0.3}_{-0.2}times 10^{6}$M$_{odot}$. The gas kinematics shows low velocity dispersions ($sigma$) and low [NII]/H$alpha$ ratios for the star-forming complexes and higher $sigma$ and [NII]/H$alpha$ surrounding the radio emission region, supporting interaction between the radio-plasma and ambient gas. The two OH masers detected in IRASF23199E are observed in the vicinity of these enhanced $sigma$ regions, supporting their association with the active nucleus and its interaction with the surrounding gas. The gas velocity field can be partially reproduced by rotation in a disk, with residuals along the north-south direction being tentatively attributed to emission from the front walls of a bipolar outflow.
Protostellar jets and outflows are key features of the star-formation process, and primary processes of the feedback of young stars on the interstellar medium. Understanding the underlying shocks is necessary to explain how jets and outflows are launched, and to quantify their chemical and energetic impacts on the surrounding medium. We performed a high-spectral resolution study of the [OI]$_{rm 63 mu m}$ emission in the outflow of the intermediate-mass Class 0 protostar Cep E-mm. We present observations of the OI $^3$P$_1 rightarrow$ $^3$P$_2$, OH between $^2Pi_{1/2}$ $J = 3/2$ and $J = 1/2$ at 1837.8 GHz, and CO (16-15) lines with SOFIA-GREAT at three positions in the Cep E outflow: mm (the driving protostar), BI (in the southern lobe), and BII (the terminal position in the southern lobe). The CO line is detected at all three positions. The OI line is detected in BI and BII, whereas the OH line is not detected. In BII, we identify three kinematical components in OI and CO, already detected in CO: the jet, the HH377 terminal bow-shock, and the outflow cavity. The OI column density is higher in the outflow cavity than in the jet, which itself is higher than in the terminal shock. The terminal shock is where the abundance ratio of OI to CO is the lowest (about 0.2), whereas the jet component is atomic (ratio $sim$2.7). In the jet, we compare the OI observations with shock models that successfully fit the integrated intensity of 10 CO lines: these models do not fit the OI data. The high intensity of OI emission points towards the propagation of additional dissociative or alternative FUV-irradiated shocks, where the illumination comes from the shock itself. From the sample of low-to-high mass protostellar outflows where similar observations have been performed, the effects of illumination seem to increase with the mass of the protostar.
We present Gemini GMOS-IFU data of eight compact low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyse their stellar kinematics, stellar population, and present two-dimensional maps of these properties covering the central 5x 7 region. We find a large variety of kinematics: from non- to highly-rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally-concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the lambdaR parameter and find six fast-rotators and two slow-rotators, one having a thin counter-rotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive ($M>10^{10}$Msun) ETGs from the A3D sample. The compact low-mass ETGs in our sample are located in high density regions, often close to a massive galaxy and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا