Do you want to publish a course? Click here

Approximation Algorithms for Cascading Prediction Models

84   0   0.0 ( 0 )
 Added by Matthew Streeter
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We present an approximation algorithm that takes a pool of pre-trained models as input and produces from it a cascaded model with similar accuracy but lower average-case cost. Applied to state-of-the-art ImageNet classification models, this yields up to a 2x reduction in floating point multiplications, and up to a 6x reduction in average-case memory I/O. The auto-generated cascades exhibit intuitive properties, such as using lower-resolution input for easier images and requiring higher prediction confidence when using a computationally cheaper model.

rate research

Read More

Cascading bandit (CB) is a popular model for web search and online advertising, where an agent aims to learn the $K$ most attractive items out of a ground set of size $L$ during the interaction with a user. However, the stationary CB model may be too simple to apply to real-world problems, where user preferences may change over time. Considering piecewise-stationary environments, two efficient algorithms, texttt{GLRT-CascadeUCB} and texttt{GLRT-CascadeKL-UCB}, are developed and shown to ensure regret upper bounds on the order of $mathcal{O}(sqrt{NLTlog{T}})$, where $N$ is the number of piecewise-stationary segments, and $T$ is the number of time slots. At the crux of the proposed algorithms is an almost parameter-free change-point detector, the generalized likelihood ratio test (GLRT). Comparing with existing works, the GLRT-based algorithms: i) are free of change-point-dependent information for choosing parameters; ii) have fewer tuning parameters; iii) improve at least the $L$ dependence in regret upper bounds. In addition, we show that the proposed algorithms are optimal (up to a logarithm factor) in terms of regret by deriving a minimax lower bound on the order of $Omega(sqrt{NLT})$ for piecewise-stationary CB. The efficiency of the proposed algorithms relative to state-of-the-art approaches is validated through numerical experiments on both synthetic and real-world datasets.
We propose a method for meta-learning reinforcement learning algorithms by searching over the space of computational graphs which compute the loss function for a value-based model-free RL agent to optimize. The learned algorithms are domain-agnostic and can generalize to new environments not seen during training. Our method can both learn from scratch and bootstrap off known existing algorithms, like DQN, enabling interpretable modifications which improve performance. Learning from scratch on simple classical control and gridworld tasks, our method rediscovers the temporal-difference (TD) algorithm. Bootstrapped from DQN, we highlight two learned algorithms which obtain good generalization performance over other classical control tasks, gridworld type tasks, and Atari games. The analysis of the learned algorithm behavior shows resemblance to recently proposed RL algorithms that address overestimation in value-based methods.
We introduce the framework of continuous-depth graph neural networks (GNNs). Neural graph differential equations (Neural GDEs) are formalized as the counterpart to GNNs where the input-output relationship is determined by a continuum of GNN layers, blending discrete topological structures and differential equations. The proposed framework is shown to be compatible with static GNN models and is extended to dynamic and stochastic settings through hybrid dynamical system theory. Here, Neural GDEs improve performance by exploiting the underlying dynamics geometry, further introducing the ability to accommodate irregularly sampled data. Results prove the effectiveness of the proposed models across applications, such as traffic forecasting or prediction in genetic regulatory networks.
Learning to classify time series with limited data is a practical yet challenging problem. Current methods are primarily based on hand-designed feature extraction rules or domain-specific data augmentation. Motivated by the advances in deep speech processing models and the fact that voice data are univariate temporal signals, in this paper, we propose Voice2Series (V2S), a novel end-to-end approach that reprograms acoustic models for time series classification, through input transformation learning and output label mapping. Leveraging the representation learning power of a large-scale pre-trained speech processing model, on 30 different time series tasks we show that V2S either outperforms or is tied with state-of-the-art methods on 20 tasks, and improves their average accuracy by 1.84%. We further provide a theoretical justification of V2S by proving its population risk is upper bounded by the source risk and a Wasserstein distance accounting for feature alignment via reprogramming. Our results offer new and effective means to time series classification.
156 - Xianqi Chen 2021
Thermal issue is of great importance during layout design of heat source components in systems engineering, especially for high functional-density products. Thermal analysis generally needs complex simulation, which leads to an unaffordable computational burden to layout optimization as it iteratively evaluates different schemes. Surrogate modeling is an effective way to alleviate computation complexity. However, temperature field prediction (TFP) with complex heat source layout (HSL) input is an ultra-high dimensional nonlinear regression problem, which brings great difficulty to traditional regression models. The Deep neural network (DNN) regression method is a feasible way for its good approximation performance. However, it faces great challenges in both data preparation for sample diversity and uniformity in the layout space with physical constraints, and proper DNN model selection and training for good generality, which necessitates efforts of both layout designer and DNN experts. To advance this cross-domain research, this paper proposes a DNN based HSL-TFP surrogate modeling task benchmark. With consideration for engineering applicability, sample generation, dataset evaluation, DNN model, and surrogate performance metrics, are thoroughly studied. Experiments are conducted with ten representative state-of-the-art DNN models. Detailed discussion on baseline results is provided and future prospects are analyzed for DNN based HSL-TFP tasks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا