Do you want to publish a course? Click here

A 2x2 quantum dot array with controllable inter-dot tunnel couplings

128   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The interaction between electrons in arrays of electrostatically defined quantum dots is naturally described by a Fermi-Hubbard Hamiltonian. Moreover, the high degree of tunability of these systems make them a powerful platform to simulate different regimes of the Hubbard model. However, most quantum dot array implementations have been limited to one-dimensional linear arrays. In this letter, we present a square lattice unit cell of 2$times$2 quantum dots defined electrostatically in a AlGaAs/GaAs heterostructure using a double-layer gate technique. We probe the properties of the array using nearby quantum dots operated as charge sensors. We show that we can deterministically and dynamically control the charge occupation in each quantum dot in the single- to few-electron regime. Additionally, we achieve simultaneous individual control of the nearest-neighbor tunnel couplings over a range 0-40~$mu$eV. Finally, we demonstrate fast ($sim 1$~$mu$s) single-shot readout of the spin state of electrons in the dots, through spin-to-charge conversion via Pauli spin blockade. These advances pave the way to analog quantum simulations in two dimensions, not previously accessible in quantum dot systems.



rate research

Read More

Semiconductor quantum dot arrays defined electrostatically in a 2D electron gas provide a scalable platform for quantum information processing and quantum simulations. For the operation of quantum dot arrays, appropriate voltages need to be applied to the gate electrodes that define the quantum dot potential landscape. Tuning the gate voltages has proven to be a time-consuming task, because of initial electrostatic disorder and capacitive cross-talk effects. Here, we report on the automated tuning of the inter-dot tunnel coupling in a linear array of gate-defined semiconductor quantum dots. The automation of the tuning of the inter-dot tunnel coupling is the next step forward in scalable and efficient control of larger quantum dot arrays. This work greatly reduces the effort of tuning semiconductor quantum dots for quantum information processing and quantum simulation.
Electrostatically-defined semiconductor quantum dot arrays offer a promising platform for quantum computation and quantum simulation. However, crosstalk of gate voltages to dot potentials and inter-dot tunnel couplings complicates the tuning of the device parameters. To date, crosstalk to the dot potentials is routinely and efficiently compensated using so-called virtual gates, which are specific linear combinations of physical gate voltages. However, due to exponential dependence of tunnel couplings on gate voltages, crosstalk to the tunnel barriers is currently compensated through a slow iterative process. In this work, we show that the crosstalk on tunnel barriers can be efficiently characterized and compensated for, using the fact that the same exponential dependence applies to all gates. We demonstrate efficient calibration of crosstalk in a quadruple quantum dot array and define a set of virtual barrier gates, with which we show orthogonal control of all inter-dot tunnel couplings. Our method marks a key step forward in the scalability of the tuning process of large-scale quantum dot arrays.
A two-dimensional arrangement of quantum dots with finite inter-dot tunnel coupling provides a promising platform for studying complicated spin correlations as well as for constructing large-scale quantum computers. Here, we fabricate a tunnel-coupled triangular triple quantum dot with a novel gate geometry in which three dots are defined by positively biasing the surface gates. At the same time, the small area in the center of the triangle is depleted by negatively biasing the top gate placed above the surface gates. The size of the small center depleted area is estimated from the Aharonov-Bohm oscillation measured for the triangular channel but incorporating no gate-defined dots, with a value consistent with the design. With this approach, we can bring the neighboring gate-defined dots close enough to one another to maintain a finite inter-dot tunnel coupling. We finally confirm the presence of the inter-dot tunnel couplings in the triple quantum dot from the measurement of tunneling current through the dots in the stability diagram. We also show that the charge occupancy of each dot and that the inter-dot tunnel couplings are tunable with gate voltages.
The advanced nanoscale integration available in silicon complementary metal-oxide-semiconductor (CMOS) technology provides a key motivation for its use in spin-based quantum computing applications. Initial demonstrations of quantum dot formation and spin blockade in CMOS foundry-compatible devices are encouraging, but results are yet to match the control of individual electrons demonstrated in university-fabricated multi-gate designs. We show here that the charge state of quantum dots formed in a CMOS nanowire device can be sensed by using floating gates to electrostatically couple it to a remote single electron transistor (SET) formed in an adjacent nanowire. By biasing the nanowire and gates of the remote SET with respect to the nanowire hosting the quantum dots, we controllably form ancillary quantum dots under the floating gates, thus enabling the demonstration of independent control over charge transitions in a quadruple (2x2) quantum dot array. This device overcomes the limitations associated with measurements based on tunnelling transport through the dots and permits the sensing of all charge transitions, down to the last electron in each dot. We use effective mass theory to investigate the necessary optimization of the device parameters in order to achieve the tunnel rates required for spin-based quantum computation.
74 - F. Borjans , X. Zhang , X. Mi 2021
Electrons confined in silicon quantum dots exhibit orbital, spin, and valley degrees of freedom. The valley degree of freedom originates from the bulk bandstructure of silicon, which has six degenerate electronic minima. The degeneracy can be lifted in silicon quantum wells due to strain and electronic confinement, but the valley splitting of the two lowest lying valleys is known to be sensitive to atomic-scale disorder. Large valley splittings are desirable to have a well-defined spin qubit. In addition, an understanding of the inter-valley tunnel coupling that couples different valleys in adjacent quantum dots is extremely important, as the resulting gaps in the energy level diagram may affect the fidelity of charge and spin transfer protocols in silicon quantum dot arrays. Here we use microwave spectroscopy to probe spatial variations in the valley splitting, and the intra- and inter-valley tunnel couplings ($t_{ij}$ and $t_{ij}$) that couple dots $i$ and $j$ in a triple quantum dot (TQD). We uncover large spatial variations in the ratio of inter-valley to intra-valley tunnel couplings $t_{12}/t_{12}=0.90$ and $t_{23}/t_{23}=0.56$. By tuning the interdot tunnel barrier we also show that $t_{ij}$ scales linearly with $t_{ij}$, as expected from theory. The results indicate strong interactions between different valley states on neighboring dots, which we attribute to local inhomogeneities in the silicon quantum well.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا