No Arabic abstract
We study a single-server Markovian queueing model with $N$ customer classes in which priority is given to the shortest queue. Under a critical load condition, we establish the diffusion limit of the workload and queue length processes in the form of a Walsh Brownian motion (WBM) living in the union of the $N$ nonnegative coordinate axes in $mathbb{R}^N$ and a linear transformation thereof. This reveals the following asymptotic behavior. Each time that queues begin to build starting from an empty system, one of them becomes dominant in the sense that it contains nearly all the workload in the system, and it remains so until the system becomes (nearly) empty again. The radial part of the WBM, given as a reflected Brownian motion (RBM) on the half-line, captures the total workload asymptotics, whereas its angular distribution expresses how likely it is for each class to become dominant on excursions. As a heavy traffic result it is nonstandard in three ways: (i) In the terminology of Harrison (1995) it is unconventional, in that the limit is not an RBM. (ii) It does not constitute an invariance principle, in that the limit law (specifically, the angular distribution) is not determined solely by the first two moments of the data, and is sensitive even to tie breaking rules. (iii) The proof method does not fully characterize the limit law (specifically, it gives no information on the angular distribution).
This paper investigates a partially observable queueing system with $N$ nodes in which each node has a dedicated arrival stream. There is an extra arrival stream to balance the load of the system by routing its customers to the shortest queue. In addition, a reward-cost structure is considered to analyze customers strategic behaviours. The equilibrium and socially optimal strategies are derived for the partially observable mean field limit model. Then, we show that the strategies obtained from the mean field model are good approximations to the model with finite $N$ nodes. Finally, numerical experiments are provided to compare the equilibrium and socially optimal behaviours, including joining probabilities and social benefits for different system parameters.
The scope of this work is twofold: On the one hand, strongly motivated by emerging engineering issues in multiple access communication systems, we investigate the performance of a slotted-time relay-assisted cooperative random access wireless network with collisions and with join the shortest queue relay-routing protocol. For this model, we investigate the stability condition, and apply different methods to derive the joint equilibrium distribution of the queue lengths. On the other hand, using the cooperative communication system as a vehicle for illustration, we investigate and compare three different approaches for this type of multi-dimensional stochastic processes, namely the compensation approach, the power series algorithm (PSA), and the probability generating function (PGF) approach. We present an extensive numerical comparison of the compensation approach and PSA, and discuss which method performs better in terms of accuracy and computation time. We also provide details on how to compute the PGF in terms of a solution of a Riemann-Hilbert boundary value problem.
This is a summary (in French) of my work about brownian motion and Kac-Moody algebras during the last seven years, presented towards the Habilitation degree.
To extend several known centered Gaussian processes, we introduce a new centered mixed self-similar Gaussian process called the mixed generalized fractional Brownian motion, which could serve as a good model for a larger class of natural phenomena. This process generalizes both the well known mixed fractional Brownian motion introduced by Cheridito [10] and the generalized fractional Brownian motion introduced by Zili [31]. We study its main stochastic properties, its non-Markovian and non-stationarity characteristics and the conditions under which it is not a semimartingale. We prove the long range dependence properties of this process.
Nils Tongring (1987) proved sufficient conditions for a compact set to contain $k$-tuple points of a Brownian motion. In this paper, we extend these findings to the fractional Brownian motion. Using the property of strong local nondeterminism, we show that if $B$ is a fractional Brownian motion in $mathbb{R}^d$ with Hurst index $H$ such that $Hd=1$, and $E$ is a fixed, nonempty compact set in $mathbb{R}^d$ with positive capacity with respect to the function $phi(s) = (log_+(1/s))^k$, then $E$ contains $k$-tuple points with positive probability. For the $Hd > 1$ case, the same result holds with the function replaced by $phi(s) = s^{-k(d-1/H)}$.