Do you want to publish a course? Click here

Aggregate Graph Statistics

64   0   0.0 ( 0 )
 Added by EPTCS
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Collecting statistic from graph-based data is an increasingly studied topic in the data mining community. We argue that these statistics have great value as well in dynamic IoT contexts: they can support complex computational activities involving distributed coordination and provision of situation recognition. We show that the HyperANF algorithm for calculating the neighbourhood function of vertices of a graph naturally allows for a fully distributed and asynchronous implementation, thanks to a mapping to the field calculus, a distribution model proposed for collective adaptive systems. This mapping gives evidence that the field calculus framework is well-suited to accommodate massively parallel computations over graphs. Furthermore, it provides a new self-stabilising building block which can be used in aggregate computing in several contexts, there including improved leader election or network vulnerabilities detection.



rate research

Read More

Recent years have witnessed the popularity and success of graph neural networks (GNN) in various scenarios. To obtain data-specific GNN architectures, researchers turn to neural architecture search (NAS), which has made impressive success in discovering effective architectures in convolutional neural networks. However, it is non-trivial to apply NAS approaches to GNN due to challenges in search space design and the expensive searching cost of existing NAS methods. In this work, to obtain the data-specific GNN architectures and address the computational challenges facing by NAS approaches, we propose a framework, which tries to Search to Aggregate NEighborhood (SANE), to automatically design data-specific GNN architectures. By designing a novel and expressive search space, we propose a differentiable search algorithm, which is more efficient than previous reinforcement learning based methods. Experimental results on four tasks and seven real-world datasets demonstrate the superiority of SANE compared to existing GNN models and NAS approaches in terms of effectiveness and efficiency. (Code is available at: https://github.com/AutoML-4Paradigm/SANE).
In this paper, we propose FairCrowd, a private, fair, and verifiable framework for aggregate statistics in mobile crowdsensing based on the public blockchain. In specific, mobile users are incentivized to collect and share private data values (e.g., current locations) to fufill a commonly interested task released by a customer, and the crowdsensing server computes aggregate statistics over the values of mobile users (e.g., the most popular location) for the customer. By utilizing the ElGamal encryption, the server learns nearly nothing about the private data or the statistical result. The correctness of aggregate statistics can be publicly verified by using a new efficient and verifiable computation approach. Moreover, the fairness of incentive is guaranteed based on the public blockchain in the presence of greedy service provider, customers, and mobile users, who may launch payment-escaping, payment-reduction, free-riding, double-reporting, and Sybil attacks to corrupt reward distribution. Finally, FairCrowd is proved to achieve verifiable aggregate statistics with privacy preservation for mobile users. Extensive experiments are conducted to demonstrate the high efficiency of FairCrowd for aggregate statistics in mobile crowdsensing.
We introduce GraSPy, a Python library devoted to statistical inference, machine learning, and visualization of random graphs and graph populations. This package provides flexible and easy-to-use algorithms for analyzing and understanding graphs with a scikit-learn compliant API. GraSPy can be downloaded from Python Package Index (PyPi), and is released under the Apache 2.0 open-source license. The documentation and all releases are available at https://neurodata.io/graspy.
The dynamic scaling of distributed computations plays an important role in the utilization of elastic computational resources, such as the cloud. It enables the provisioning and de-provisioning of resources to match dynamic resource availability and demands. In the case of distributed graph processing, changing the number of the graph partitions while maintaining high partitioning quality imposes serious computational overheads as typically a time-consuming graph partitioning algorithm needs to execute each time repartitioning is required. In this paper, we propose a dynamic scaling method that can efficiently change the number of graph partitions while keeping its quality high. Our idea is based on two techniques: preprocessing and very fast edge partitioning, called graph edge ordering and chunk-based edge partitioning, respectively. The former converts the graph data into an ordered edge list in such a way that edges with high locality are closer to each other. The latter immediately divides the ordered edge list into an arbitrary number of high-quality partitions. The evaluation with the real-world billion-scale graphs demonstrates that our proposed approach significantly reduces the repartitioning time, while the partitioning quality it achieves is on par with that of the best existing static method.
In this paper, we provide (i) a rigorous general theory to elicit conditions on (tail-dependent) heavy-tailed cyber-risk distributions under which a risk management firm might find it (non)sustainable to provide aggregate cyber-risk coverage services for smart societies, and (ii)a real-data driven numerical study to validate claims made in theory assuming boundedly rational cyber-risk managers, alongside providing ideas to boost markets that aggregate dependent cyber-risks with heavy-tails.To the best of our knowledge, this is the only complete general theory till date on the feasibility of aggregate cyber-risk management.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا