Do you want to publish a course? Click here

Private, Fair, and Verifiable Aggregate Statistics for Mobile Crowdsensing in Blockchain Era

69   0   0.0 ( 0 )
 Added by Jianbing Ni
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In this paper, we propose FairCrowd, a private, fair, and verifiable framework for aggregate statistics in mobile crowdsensing based on the public blockchain. In specific, mobile users are incentivized to collect and share private data values (e.g., current locations) to fufill a commonly interested task released by a customer, and the crowdsensing server computes aggregate statistics over the values of mobile users (e.g., the most popular location) for the customer. By utilizing the ElGamal encryption, the server learns nearly nothing about the private data or the statistical result. The correctness of aggregate statistics can be publicly verified by using a new efficient and verifiable computation approach. Moreover, the fairness of incentive is guaranteed based on the public blockchain in the presence of greedy service provider, customers, and mobile users, who may launch payment-escaping, payment-reduction, free-riding, double-reporting, and Sybil attacks to corrupt reward distribution. Finally, FairCrowd is proved to achieve verifiable aggregate statistics with privacy preservation for mobile users. Extensive experiments are conducted to demonstrate the high efficiency of FairCrowd for aggregate statistics in mobile crowdsensing.



rate research

Read More

Mobile crowdsensing (MCS) is an emerging sensing data collection pattern with scalability, low deployment cost, and distributed characteristics. Traditional MCS systems suffer from privacy concerns and fair reward distribution. Moreover, existing privacy-preserving MCS solutions usually focus on the privacy protection of data collection rather than that of data processing. To tackle faced problems of MCS, in this paper, we integrate federated learning (FL) into MCS and propose a privacy-preserving MCS system, called textsc{CrowdFL}. Specifically, in order to protect privacy, participants locally process sensing data via federated learning and only upload encrypted training models. Particularly, a privacy-preserving federated averaging algorithm is proposed to average encrypted training models. To reduce computation and communication overhead of restraining dropped participants, discard and retransmission strategies are designed. Besides, a privacy-preserving posted pricing incentive mechanism is designed, which tries to break the dilemma of privacy protection and data evaluation. Theoretical analysis and experimental evaluation on a practical MCS application demonstrate the proposed textsc{CrowdFL} can effectively protect participants privacy and is feasible and efficient.
85 - Yang Liu , Zhuo Ma , Ximeng Liu 2019
Recently, Google and other 24 institutions proposed a series of open challenges towards federated learning (FL), which include application expansion and homomorphic encryption (HE). The former aims to expand the applicable machine learning models of FL. The latter focuses on who holds the secret key when applying HE to FL. For the naive HE scheme, the server is set to master the secret key. Such a setting causes a serious problem that if the server does not conduct aggregation before decryption, a chance is left for the server to access the users update. Inspired by the two challenges, we propose FedXGB, a federated extreme gradient boosting (XGBoost) scheme supporting forced aggregation. FedXGB mainly achieves the following two breakthroughs. First, FedXGB involves a new HE based secure aggregation scheme for FL. By combining the advantages of secret sharing and homomorphic encryption, the algorithm can solve the second challenge mentioned above, and is robust to the user dropout. Then, FedXGB extends FL to a new machine learning model by applying the secure aggregation scheme to the classification and regression tree building of XGBoost. Moreover, we conduct a comprehensive theoretical analysis and extensive experiments to evaluate the security, effectiveness, and efficiency of FedXGB. The results indicate that FedXGB achieves less than 1% accuracy loss compared with the original XGBoost, and can provide about 23.9% runtime and 33.3% communication reduction for HE based model update aggregation of FL.
104 - Kai Zhou , M. H. Afifi , Jian Ren 2016
Discrete exponential operation, such as modular exponentiation and scalar multiplication on elliptic curves, is a basic operation of many public-key cryptosystems. However, the exponential operations are considered prohibitively expensive for resource-constrained mobile devices. In this paper, we address the problem of secure outsourcing of exponentiation operations to one single untrusted server. Our proposed scheme (ExpSOS) only requires very limited number of modular multiplications at local mobile environment thus it can achieve impressive computational gain. ExpSOS also provides a secure verification scheme with probability approximately 1 to ensure that the mobile end-users can always receive valid results. The comprehensive analysis as well as the simulation results in real mobile device demonstrates that our proposed ExpSOS can significantly improve the existing schemes in efficiency, security and result verifiability. We apply ExpSOS to securely outsource several cryptographic protocols to show that ExpSOS is widely applicable to many cryptographic computations.
There has been tremendous interest in the development of formal trust models and metrics through the use of analytics (e.g., Belief Theory and Bayesian models), logics (e.g., Epistemic and Subjective Logic) and other mathematical models. The choice of trust metric will depend on context, circumstance and user requirements and there is no single best metric for use in all circumstances. Where different users require different trust metrics to be employed the trust score calculations should still be based on all available trust evidence. Trust is normally computed using past experiences but, in practice (especially in centralised systems), the validity and accuracy of these experiences are taken for granted. In this paper, we provide a formal framework and practical blockchain-based implementation that allows independent trust providers to implement different trust metrics in a distributed manner while still allowing all trust providers to base their calculations on a common set of trust evidence. Further, our design allows experiences to be provably linked to interactions without the need for a central authority. This leads to the notion of evidence-based trust with provable interactions. Leveraging blockchain allows the trust providers to offer their services in a competitive manner, charging fees while users are provided with payments for recording experiences. Performance details of the blockchain implementation are provided.
Blockchain is increasingly being used to provide a distributed, secure, trusted, and private framework for energy trading in smart grids. However, existing solutions suffer from lack of privacy, processing and packet overheads, and reliance on Trusted Third Parties (TTP). To address these challenges, we propose a Secure Private Blockchain-based (SPB) framework. SPB enables the energy producers and consumers to directly negotiate the energy price. To reduce the associated packet overhead, we propose a routing method which routes packets based on the destination Public Key (PK). SPB eliminates the need for TTP by introducing atomic meta-transactions. The two transactions that form a meta-transaction are visible to the blockchain participants only after both of them are generated. Thus, if one of the participants does not commit to its tasks in a pre-defined time, then the energy trade expires and the corresponding transaction is treated as invalid. The smart meter of the consumer confirms receipt of energy by generating an Energy Receipt Confirmation (ERC). To verify that the ERC is generated by a genuine smart meter, SPB supports authentication of anonymous smart meters which in turn enhances the privacy of the meter owner. Qualitative security analysis shows the resilience of SPB against a range of attacks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا