Do you want to publish a course? Click here

An Instability in Variational Inference for Topic Models

99   0   0.0 ( 0 )
 Added by Andrea Montanari
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Topic models are Bayesian models that are frequently used to capture the latent structure of certain corpora of documents or images. Each data element in such a corpus (for instance each item in a collection of scientific articles) is regarded as a convex combination of a small number of vectors corresponding to `topics or `components. The weights are assumed to have a Dirichlet prior distribution. The standard approach towards approximating the posterior is to use variational inference algorithms, and in particular a mean field approximation. We show that this approach suffers from an instability that can produce misleading conclusions. Namely, for certain regimes of the model parameters, variational inference outputs a non-trivial decomposition into topics. However --for the same parameter values-- the data contain no actual information about the true decomposition, and hence the output of the algorithm is uncorrelated with the true topic decomposition. Among other consequences, the estimated posterior mean is significantly wrong, and estimated Bayesian credible regions do not achieve the nominal coverage. We discuss how this instability is remedied by more accurate mean field approximations.



rate research

Read More

Topic models are one of the most popular methods for learning representations of text, but a major challenge is that any change to the topic model requires mathematically deriving a new inference algorithm. A promising approach to address this problem is autoencoding variational Bayes (AEVB), but it has proven diffi- cult to apply to topic models in practice. We present what is to our knowledge the first effective AEVB based inference method for latent Dirichlet allocation (LDA), which we call Autoencoded Variational Inference For Topic Model (AVITM). This model tackles the problems caused for AEVB by the Dirichlet prior and by component collapsing. We find that AVITM matches traditional methods in accuracy with much better inference time. Indeed, because of the inference network, we find that it is unnecessary to pay the computational cost of running variational optimization on test data. Because AVITM is black box, it is readily applied to new topic models. As a dramatic illustration of this, we present a new topic model called ProdLDA, that replaces the mixture model in LDA with a product of experts. By changing only one line of code from LDA, we find that ProdLDA yields much more interpretable topics, even if LDA is trained via collapsed Gibbs sampling.
Stochastic variational inference for collapsed models has recently been successfully applied to large scale topic modelling. In this paper, we propose a stochastic collapsed variational inference algorithm for hidden Markov models, in a sequential data setting. Given a collapsed hidden Markov Model, we break its long Markov chain into a set of short subchains. We propose a novel sum-product algorithm to update the posteriors of the subchains, taking into account their boundary transitions due to the sequential dependencies. Our experiments on two discrete datasets show that our collapsed algorithm is scalable to very large datasets, memory efficient and significantly more accurate than the existing uncollapsed algorithm.
We develop new models and algorithms for learning the temporal dynamics of the topic polytopes and related geometric objects that arise in topic model based inference. Our model is nonparametric Bayesian and the corresponding inference algorithm is able to discover new topics as the time progresses. By exploiting the connection between the modeling of topic polytope evolution, Beta-Bernoulli process and the Hungarian matching algorithm, our method is shown to be several orders of magnitude faster than existing topic modeling approaches, as demonstrated by experiments working with several million documents in under two dozens of minutes.
Continuous latent time series models are prevalent in Bayesian modeling; examples include the Kalman filter, dynamic collaborative filtering, or dynamic topic models. These models often benefit from structured, non mean field variational approximations that capture correlations between time steps. Black box variational inference with reparameterization gradients (BBVI) allows us to explore a rich new class of Bayesian non-conjugate latent time series models; however, a naive application of BBVI to such structured variational models would scale quadratically in the number of time steps. We describe a BBVI algorithm analogous to the forward-backward algorithm which instead scales linearly in time. It allows us to efficiently sample from the variational distribution and estimate the gradients of the ELBO. Finally, we show results on the recently proposed dynamic word embedding model, which was trained using our method.
Supervised topic models can help clinical researchers find interpretable cooccurence patterns in count data that are relevant for diagnostics. However, standard formulations of supervised Latent Dirichlet Allocation have two problems. First, when documents have many more words than labels, the influence of the labels will be negligible. Second, due to conditional independence assumptions in the graphical model the impact of supervised labels on the learned topic-word probabilities is often minimal, leading to poor predictions on heldout data. We investigate penalized optimization methods for training sLDA that produce interpretable topic-word parameters and useful heldout predictions, using recognition networks to speed-up inference. We report preliminary results on synthetic data and on predicting successful anti-depressant medication given a patients diagnostic history.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا