Do you want to publish a course? Click here

Supervised topic models for clinical interpretability

199   0   0.0 ( 0 )
 Added by Michael Hughes
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

Supervised topic models can help clinical researchers find interpretable cooccurence patterns in count data that are relevant for diagnostics. However, standard formulations of supervised Latent Dirichlet Allocation have two problems. First, when documents have many more words than labels, the influence of the labels will be negligible. Second, due to conditional independence assumptions in the graphical model the impact of supervised labels on the learned topic-word probabilities is often minimal, leading to poor predictions on heldout data. We investigate penalized optimization methods for training sLDA that produce interpretable topic-word parameters and useful heldout predictions, using recognition networks to speed-up inference. We report preliminary results on synthetic data and on predicting successful anti-depressant medication given a patients diagnostic history.



rate research

Read More

Topic models are one of the most popular methods for learning representations of text, but a major challenge is that any change to the topic model requires mathematically deriving a new inference algorithm. A promising approach to address this problem is autoencoding variational Bayes (AEVB), but it has proven diffi- cult to apply to topic models in practice. We present what is to our knowledge the first effective AEVB based inference method for latent Dirichlet allocation (LDA), which we call Autoencoded Variational Inference For Topic Model (AVITM). This model tackles the problems caused for AEVB by the Dirichlet prior and by component collapsing. We find that AVITM matches traditional methods in accuracy with much better inference time. Indeed, because of the inference network, we find that it is unnecessary to pay the computational cost of running variational optimization on test data. Because AVITM is black box, it is readily applied to new topic models. As a dramatic illustration of this, we present a new topic model called ProdLDA, that replaces the mixture model in LDA with a product of experts. By changing only one line of code from LDA, we find that ProdLDA yields much more interpretable topics, even if LDA is trained via collapsed Gibbs sampling.
Non-negative matrix factorization (NMF) is a technique for finding latent representations of data. The method has been applied to corpora to construct topic models. However, NMF has likelihood assumptions which are often violated by real document corpora. We present a double parametric bootstrap test for evaluating the fit of an NMF-based topic model based on the duality of the KL divergence and Poisson maximum likelihood estimation. The test correctly identifies whether a topic model based on an NMF approach yields reliable results in simulated and real data.
Topic models are Bayesian models that are frequently used to capture the latent structure of certain corpora of documents or images. Each data element in such a corpus (for instance each item in a collection of scientific articles) is regarded as a convex combination of a small number of vectors corresponding to `topics or `components. The weights are assumed to have a Dirichlet prior distribution. The standard approach towards approximating the posterior is to use variational inference algorithms, and in particular a mean field approximation. We show that this approach suffers from an instability that can produce misleading conclusions. Namely, for certain regimes of the model parameters, variational inference outputs a non-trivial decomposition into topics. However --for the same parameter values-- the data contain no actual information about the true decomposition, and hence the output of the algorithm is uncorrelated with the true topic decomposition. Among other consequences, the estimated posterior mean is significantly wrong, and estimated Bayesian credible regions do not achieve the nominal coverage. We discuss how this instability is remedied by more accurate mean field approximations.
We develop new models and algorithms for learning the temporal dynamics of the topic polytopes and related geometric objects that arise in topic model based inference. Our model is nonparametric Bayesian and the corresponding inference algorithm is able to discover new topics as the time progresses. By exploiting the connection between the modeling of topic polytope evolution, Beta-Bernoulli process and the Hungarian matching algorithm, our method is shown to be several orders of magnitude faster than existing topic modeling approaches, as demonstrated by experiments working with several million documents in under two dozens of minutes.
We propose several new models for semi-supervised nonnegative matrix factorization (SSNMF) and provide motivation for SSNMF models as maximum likelihood estimators given specific distributions of uncertainty. We present multiplicative updates training methods for each new model, and demonstrate the application of these models to classification, although they are flexible to other supervised learning tasks. We illustrate the promise of these models and training methods on both synthetic and real data, and achieve high classification accuracy on the 20 Newsgroups dataset.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا