Do you want to publish a course? Click here

Nonlinear resonances in the $ABC$-flow

60   0   0.0 ( 0 )
 Added by Michael Uleysky
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper we study resonances of the $ABC$-flow in the near integrable case ($Cll 1$). This is an interesting example of a Hamiltonian system with 3/2 degrees of freedom in which simultaneous existence of two resonances of the same order is possible. Analytical conditions of the resonance existence are received. It is shown numerically that the largest $n:1$ ($n=1,2,3$) resonances exist, and their energies are equal to theoretical energies in the near integrable case. We provide analytical and numerical evidences for existence of two branches of the two largest $n:1$ ($n=1,2$) resonances in the region of finite motion.



rate research

Read More

Analytical expressions for coordinates of stationary points and conditions for their existence in the ABC flow are received. The type of the stationary points is shown analytically to be saddle-node. Exact expressions for eigenvalues and eigenvectors of the stability matrix are given. Behavior of the stationary points along the bifurcation lines is described.
105 - Duo Wang , Lei Wu 2021
The movement of subaqueous sediment in laminar shearing flow is numerically investigated by the coupled lattice Boltzmann and discrete element methods. First, the numerical method is validated by comparing the phase diagram proposed by Ouriemi {it et al.} ({it J. Fluid Mech}., vol. 636, 2009, pp. 321-336). Second, a detailed study on sediment movement is performed for sediment with varying solid volume fractions, and a nonlinear relationship between the normalised thickness of the mobile layer and the normalised fluid flow rate is observed for a densely-packed sediment. Third, an independent investigation on the effective viscosity and friction coefficient of the sediment under different fluid flow rates is conducted in a shear cell; and substitution of these two critical parameters into a theoretical expression proposed by Aussillous {it et al.} ({it J. Fluid Mech}., vol. 736, 2013, pp. 594-615) provides consistent predictions of bedload thickness with the simulation results of sediment movement. Therefore, we conclude that the non-Newtonian behaviour of densely-packed sediment leads to the nonlinear relationship between the normalised thickness of the mobile layer and the normalised fluid flow rate.
We study the nonlinear mode competition of various spiral instabilities in magnetised Taylor-Couette flow. The resulting finite-amplitude mixed-mode solution branches are tracked using the annular-parallelogram periodic domain approach developed by Deguchi & Altmeyer (2013). Mode competition phenomena are studied in both the anti-cyclonic and cyclonic Rayleigh-stable regimes. In the anti-cyclonic sub-rotation regime, with the inner cylinder rotating faster than the outer, Hollerbach, Teeluck & Rudiger (2010) found competing axisymmetric and non-axisymmetric magneto-rotational linearly unstable modes within the parameter range where experimental investigation is feasible. Here we confirm the existence of mode competition and compute the nonlinear mixed-mode solutions that result from it. In the cyclonic super-rotating regime, with the inner cylinder rotating slower than the outer, Deguchi (2017) recently found a non-axisymmetric purely hydrodynamic linear instability that coexists with the non-axisymmetric magneto-rotational instability discovered a little earlier by Rudiger, Schultz, Gellert & Stefani (2016). We show that nonlinear interactions of these instabilities give rise to rich pattern-formation phenomena leading to drastic angular momentum transport enhancement/reduction.
The asymptotic derivation of a new family of one-dimensional, weakly nonlinear and weakly dispersive equations that model the flow of an ideal fluid in an elastic vessel is presented. Dissipative effects due to the viscous nature of the fluid are also taken into account. The new models validate by asymptotic reasoning other non-dispersive systems of equations that are commonly used, and improve other nonlinear and dispersive mathematical models derived to describe the blood flow in elastic vessels. The new systems are studied analytically in terms of their basic characteristic properties such as the linear dispersion characteristics, symmetries, conservation laws and solitary waves. Unidirectional model equations are also derived and analysed in the case of vessels of constant radius. The capacity of the models to be used in practical problems is being demonstrated by employing a particular system with favourable properties to study the blood flow in a large artery. Two different cases are considered: A vessel with constant radius and a tapered vessel. Significant changes in the flow can be observed in the case of the tapered vessel.
We perform a sparse identification of nonlinear dynamics (SINDy) for low-dimensionalized complex flow phenomena. We first apply the SINDy with two regression methods, the thresholded least square algorithm (TLSA) and the adaptive Lasso (Alasso) which show reasonable ability with a wide range of sparsity constant in our preliminary tests, to a two-dimensional single cylinder wake at $Re_D=100$, its transient process, and a wake of two-parallel cylinders, as examples of high-dimensional fluid data. To handle these high dimensional data with SINDy whose library matrix is suitable for low-dimensional variable combinations, a convolutional neural network-based autoencoder (CNN-AE) is utilized. The CNN-AE is employed to map a high-dimensional dynamics into a low-dimensional latent space. The SINDy then seeks a governing equation of the mapped low-dimensional latent vector. Temporal evolution of high-dimensional dynamics can be provided by combining the predicted latent vector by SINDy with the CNN decoder which can remap the low-dimensional latent vector to the original dimension. The SINDy can provide a stable solution as the governing equation of the latent dynamics and the CNN-SINDy based modeling can reproduce high-dimensional flow fields successfully, although more terms are required to represent the transient flow and the two-parallel cylinder wake than the periodic shedding. A nine-equation turbulent shear flow model is finally considered to examine the applicability of SINDy to turbulence, although without using CNN-AE. The present results suggest that the proposed scheme with an appropriate parameter choice enables us to analyze high-dimensional nonlinear dynamics with interpretable low-dimensional manifolds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا