Do you want to publish a course? Click here

Nonlinear variation of bedload thickness with fluid flow rate in laminar shearing flow

106   0   0.0 ( 0 )
 Added by Duo Wang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The movement of subaqueous sediment in laminar shearing flow is numerically investigated by the coupled lattice Boltzmann and discrete element methods. First, the numerical method is validated by comparing the phase diagram proposed by Ouriemi {it et al.} ({it J. Fluid Mech}., vol. 636, 2009, pp. 321-336). Second, a detailed study on sediment movement is performed for sediment with varying solid volume fractions, and a nonlinear relationship between the normalised thickness of the mobile layer and the normalised fluid flow rate is observed for a densely-packed sediment. Third, an independent investigation on the effective viscosity and friction coefficient of the sediment under different fluid flow rates is conducted in a shear cell; and substitution of these two critical parameters into a theoretical expression proposed by Aussillous {it et al.} ({it J. Fluid Mech}., vol. 736, 2013, pp. 594-615) provides consistent predictions of bedload thickness with the simulation results of sediment movement. Therefore, we conclude that the non-Newtonian behaviour of densely-packed sediment leads to the nonlinear relationship between the normalised thickness of the mobile layer and the normalised fluid flow rate.



rate research

Read More

The impact of wall roughness on fully developed laminar pipe flow is investigated numerically. The roughness is comprised of square bars of varying size and pitch. Results show that the inverse relation between the friction factor and the Reynolds number in smooth pipes still persists in rough pipes, regardless of the rib height and pitch. At a given Reynolds number, the friction factor varies quadratically with roughness height and linearly with roughness pitch. We propose a single correlation for the friction factor that successfully collapses the data.
Recently, detailed experiments on visco-elastic channel flow have provided convincing evidence for a nonlinear instability scenario which we had argued for based on calculations for visco-elastic Couette flow. Motivated by these experiments we extend the previous calculations to the case of visco-elastic Poiseuille flow, using the Oldroyd-B constitutive model. Our results confirm that the subcritical instability scenario is similar for both types of flow, and that the nonlinear transition occurs for Weissenberg numbers somewhat larger than one. We provide detailed results for the convergence of our expansion and for the spatial structure of the mode that drives the instability. This also gives insight into possible similarities with the mechanism of the transition to turbulence in Newtonian pipe flow.
Miniature heaters are immersed in flows of quantum fluid and the efficiency of heat transfer is monitored versus velocity, superfluid fraction and time. The fluid is $^4$He helium with a superfluid fraction varied from 71% down to 0% and an imposed velocity up to 3 m/s, while the characteristic sizes of heaters range from 1.3 $mu$m up to few hundreds of microns. At low heat fluxes, no velocity dependence is observed. In contrast, some velocity dependence emerges at larger heat flux, as reported previously, and three non-trivial properties of heat transfer are identified. First, at the largest superfluid fraction (71%), a new heat transfer regime appears at non-null velocities and it is typically 10% less conductive than at zero velocity. Second, the velocity dependence of the mean heat transfer is compatible with the square-root dependence observed in classical fluids. Surprisingly, the prefactor to this dependence is maximum for an intermediate superfluid fraction or temperature (around 2 K). Third, the heat transfer time series exhibit highly conductive short-lived events. These textit{cooling glitches} have a velocity-dependent characteristic time, which manifest itself as a broad and energetic peak in the spectrum of heat transfer time series, in the kHz range. After showing that the velocity dependence can be attributed to the breaking of superfluidity within a thin shell surrounding heaters, an analytical model of forced heat transfer in a quantum flow is developed to account for the properties reported above. We argue that large scale flow patterns must form around the heater, having a size proportional to the heat flux (here two decades larger than the heater diameter) and resulting in a turbulent wake. The observed spectral peaking of heat transfer is quantitatively consistent with the formation of a Von Karman vortex street in the wake of a bluff body.
The transitional regime of plane channel flow is investigated {above} the transitional point below which turbulence is not sustained, using direct numerical simulation in large domains. Statistics of laminar-turbulent spatio-temporal intermittency are reported. The geometry of the pattern is first characterized, including statistics for the angles of the laminar-turbulent stripes observed in this regime, with a comparison to experiments. High-order statistics of the local and instantaneous bulk velocity, wall shear stress and turbulent kinetic energy are then provided. The distributions of the two former quantities have non-trivial shapes, characterized by a large kurtosis and/or skewness. Interestingly, we observe a strong linear correlation between their kurtosis and their skewness squared, which is usually reported at much higher Reynolds number in the fully turbulent regime.
136 - Paul Manneville 2016
Plane Couette flow presents a regular oblique turbulent-laminar pattern over a wide range of Reynolds numbers R between the globally stable base flow profile at low R<R_g and a uniformly turbulent regime at sufficiently large R>R_t. The numerical simulations that we have performed on a pattern displaying a wavelength modulation show a relaxation of that modulation in agreement with what one would expect from a standard approach in terms of dissipative structures in extended geometry though the structuration develops on a turbulent background. Some consequences are discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا