No Arabic abstract
In this paper, we study a multi-user multiple-input-multiple-output secrecy simultaneous wireless information and power transfer (SWIPT) channel which consists of one transmitter, one cooperative jammer (CJ), multiple energy receivers (potential eavesdroppers, ERs), and multiple co-located receivers (CRs). We exploit the dual of artificial noise (AN) generation for facilitating efficient wireless energy transfer and secure transmission. Our aim is to maximize the minimum harvested energy among ERs and CRs subject to secrecy rate constraints for each CR and total transmit power constraint. By incorporating norm-bounded channel uncertainty model, we propose a iterative algorithm based on sequential parametric convex approximation to find a near-optimal solution. Finally, simulation results are presented to validate the performance of the proposed algorithm outperforms that of the conventional AN-aided scheme and CJ-aided scheme.
In this paper, an energy harvesting scheme for a multi-user multiple-input-multiple-output (MIMO) secrecy channel with artificial noise (AN) transmission is investigated. Joint optimization of the transmit beamforming matrix, the AN covariance matrix, and the power splitting ratio is conducted to minimize the transmit power under the target secrecy rate, the total transmit power, and the harvested energy constraints. The original problem is shown to be non-convex, which is tackled by a two-layer decomposition approach. The inner layer problem is solved through semi-definite relaxation, and the outer problem is shown to be a single-variable optimization that can be solved by one-dimensional (1-D) line search. To reduce computational complexity, a sequential parametric convex approximation (SPCA) method is proposed to find a near-optimal solution. Furthermore, tightness of the relaxation for the 1-D search method is validated by showing that the optimal solution of the relaxed problem is rank-one. Simulation results demonstrate that the proposed SPCA method achieves the same performance as the scheme based on 1-D search method but with much lower complexity.
In this paper, an energy harvesting scheme for a multi-user multiple-input-multiple-output (MIMO) secrecy channel with artificial noise (AN) transmission is investigated. Joint optimization of the transmit beamforming matrix, the AN covariance matrix, and the power splitting ratio is conducted to minimize the transmit power under the target secrecy rate, the total transmit power, and the harvested energy constraints. The original problem is shown to be non-convex, which is tackled by a two-layer decomposition approach. The inner layer problem is solved through semi-definite relaxation, and the outer problem, on the other hand, is shown to be a single- variable optimization that can be solved by one-dimensional (1- D) line search. To reduce computational complexity, a sequential parametric convex approximation (SPCA) method is proposed to find a near-optimal solution. The work is then extended to the imperfect channel state information case with norm-bounded channel errors. Furthermore, tightness of the relaxation for the proposed schemes are validated by showing that the optimal solution of the relaxed problem is rank-one. Simulation results demonstrate that the proposed SPCA method achieves the same performance as the scheme based on 1-D but with much lower complexity.
This paper considers two base stations (BSs) powered by renewable energy serving two users cooperatively. With different BS energy arrival rates, a fractional joint transmission (JT) strategy is proposed, which divides each transmission frame into two subframes. In the first subframe, one BS keeps silent to store energy while the other transmits data, and then they perform zero-forcing JT (ZF-JT) in the second subframe. We consider the average sum-rate maximization problem by optimizing the energy allocation and the time fraction of ZF-JT in two steps. Firstly, the sum-rate maximization for given energy budget in each frame is analyzed. We prove that the optimal transmit power can be derived in closed-form, and the optimal time fraction can be found via bi-section search. Secondly, approximate dynamic programming (DP) algorithm is introduced to determine the energy allocation among frames. We adopt a linear approximation with the features associated with system states, and determine the weights of features by simulation. We also operate the approximation several times with random initial policy, named as policy exploration, to broaden the policy search range. Numerical results show that the proposed fractional JT greatly improves the performance. Also, appropriate policy exploration is shown to perform close to the optimal.
In this paper, intelligent reflecting surface (IRS) is proposed to enhance the physical layer security in the Rician fading channel where the angular direction of the eavesdropper is aligned with a legitimate user. In this scenario, we consider a two-phase communication system under the active attacks and passive eavesdropping. Particularly, in the first phase, the base station avoids direct transmission to the attacked user. While, in the second phase, other users cooperate to forward signals to the attacked user with the help of IRS and energy harvesting technology. Under the active attacks, we investigate an outage constrained beamforming design problem under the statistical cascaded channel error model, which is solved by using the Bernstein-type inequality. As for the passive eavesdropping, an average secrecy rate maximization problem is formulated, which is addressed by a low complexity algorithm. Numerical results show that the negative effect of the eavesdroppers channel error is greater than that of the legitimate user.
We consider the problem of maximizing the harvested power in Multiple Input Multiple Output (MIMO) Simultaneous Wireless Information and Power Transfer (SWIPT) systems with power splitting reception. Different from recently proposed designs, we target with our novel problem formulation at the jointly optimal transmit precoding and receive uniform power splitting (UPS) ratio maximizing the harvested power, while ensuring that the Quality-of-Service (QoS) requirement of the MIMO link is satisfied. We assume generic practical Radio Frequency (RF) Energy Harvesting (EH) receive operation that results in a non-convex optimization problem for the design parameters, which we then solve optimally after formulating it in an equivalent generalized convex form. Our representative results including comparisons of achievable EH gains with benchmark schemes provide key insights on various system parameters.