No Arabic abstract
There is currently a lot of activity in R&D for future collider experiments. Multiple detector prototypes are being tested, each one with slightly different requirements regarding the format of the data to be analysed. This has generated a variety of ad-hoc solutions for data acquisition and online data monitoring. We present a generic C++11 online monitoring framework called DQM4HEP, which is designed for use as a generic online monitor for particle physics experiments, ranging from small tabletop experiments to large multi-detector testbeams, such as those currently ongoing/planned at the DESY II or CERN SPS beamlines. We present results obtained using DQM4HEP at several testbeams where the CALICE AHCAL, SDHCAL and SiWECAL detector prototypes have been tested. During these testbeams, online analysis using DQM4HEPs framework has been developed and used. We also present the currently ongoing work to integrate DQM4HEP within the EUDAQ tool. EUDAQ is a tool for common and generic data acquisition within the AIDA-2020 collaboration. This will allow these two frameworks to work together as a generic and complete DAQ and monitoring system for any type of detector prototype tested on beam tests, which is one of the goals of the AIDA-2020 project.
We present the design principle and test results of a data transmitting ASIC, GBS20, for particle physics experiments. The goal of GBS20 will be an ASIC that employs two serializers each from the 10.24 Gbps lpGBT SerDes, sharing the PLL also from lpGBT. A PAM4 encoder plus a VCSEL driver will be implemented in the same die to use the same clock system, eliminating the need of CDRs in the PAM4 encoder. This way the transmitter module, GBT20, developed using the GBS20 ASIC, will have the exact lpGBT data interface and transmission protocol, with an output up to 20.48 Gbps over one fiber. With PAM4 embedded FPGAs at the receiving end, GBT20 will halve the fibers needed in a system and better use the input bandwidth of the FPGA. A prototype, GBS20v0 is fabricated using a commercial 65 nm CMOS technology. This prototype has two serializers and a PAM4 encoder sharing the lpGBT PLL, but no user data input. An internal PRBS generator provides data to the serializers. GBS20v0 is tested barely up to 20.48 Gbps. With lessons learned from this prototype, we are designing the second prototype, GBS20v1, that will have 16 user data input channels each at 1.28 Gbps. We present the design concept of the GBS20 ASIC and the GBT20 module, the preliminary test results, and lessons learned from GBS20v0 and the design of GBS20v1 which will be not only a test chip but also a user chip with 16 input data channels.
We present the design and test results of a Drivers and Limiting AmplifierS ASIC operating at 10 Gbps (DLAS10) and three Miniature Optical Transmitter/Receiver/Transceiver modules (MTx+, MRx+, and MTRx+) based on DLAS10. DLAS10 can drive two Transmitter Optical Sub-Assemblies (TOSAs) of Vertical Cavity Surface Emitting Lasers (VCSELs), receive the signals from two Receiver Optical Sub-Assemblies (ROSAs) that have no embedded limiting amplifiers, or drive a VCSEL TOSA and receive the signal from a ROSA, respectively. Each channel of DLAS10 consists of an input Continuous Time Linear Equalizer (CTLE), a four-stage limiting amplifier (LA), and an output driver. The LA amplifies the signals of variable levels to a stable swing. The output driver drives VCSELs or impedance-controlled traces. DLAS10 is fabricated in a 65 nm CMOS technology. The die is 1 mm x 1 mm. DLAS10 is packaged in a 4 mm x 4 mm 24-pin quad-flat no-leads (QFN) package. DLAS10 has been tested in MTx+, MRx+, and MTRx+ modules. Both measured optical and electrical eye diagrams pass the 10 Gbps eye mask test. The input electrical sensitivity is 40 mVp-p, while the input optical sensitivity is -12 dBm. The total jitter of MRx+ is 29 ps (P-P) with a random jitter of 1.6 ps (RMS) and a deterministic jitter of 9.9 ps. Each MTx+/MTRx+ module consumes 82 mW/ch and 174 mW/ch, respectively.
This article describes the physics and nonproliferation goals of WATCHMAN, the WAter Cherenkov Monitor for ANtineutrinos. The baseline WATCHMAN design is a kiloton scale gadolinium-doped (Gd) light water Cherenkov detector, placed 13 kilometers from a civil nuclear reactor in the United States. In its first deployment phase, WATCHMAN will be used to remotely detect a change in the operational status of the reactor, providing a first- ever demonstration of the potential of large Gd-doped water detectors for remote reactor monitoring for future international nuclear nonproliferation applications. During its first phase, the detector will provide a critical large-scale test of the ability to tag neutrons and thus distinguish low energy electron neutrinos and antineutrinos. This would make WATCHMAN the only detector capable of providing both direction and flavor identification of supernova neutrinos. It would also be the third largest supernova detector, and the largest underground in the western hemisphere. In a follow-on phase incorporating the IsoDAR neutrino beam, the detector would have world-class sensitivity to sterile neutrino signatures and to non-standard electroweak interactions (NSI). WATCHMAN will also be a major, U.S. based integration platform for a host of technologies relevant for the Long-Baseline Neutrino Facility (LBNF) and other future large detectors. This white paper describes the WATCHMAN conceptual design,and presents the results of detailed simulations of sensitivity for the projects nonproliferation and physics goals. It also describes the advanced technologies to be used in WATCHMAN, including high quantum efficiency photomultipliers, Water-Based Liquid Scintillator (WbLS), picosecond light sensors such as the Large Area Picosecond Photo Detector (LAPPD), and advanced pattern recognition and particle identification methods.
This reports summarizes the three lectures on particle physics instrumentation given during the AEPSHEP school in November 2014 at Puri-India. The lectures were intended to give an overview of the interaction of particles with matter and basic particle detection principles in the context of large detector systems like the Large Hadron Collider.
I review the transfer of technology from accelerator-based equipment to space-borne astroparticle detectors. Requirements for detection, identification and measurement of ions, electrons and photons in space are recalled. The additional requirements and restrictions imposed by the launch process in manned and unmanned space flight, as well as by the hostile environment in orbit, are analyzed. Technology readiness criteria and risk mitigation strategies are reviewed. Recent examples are given of missions and instruments in orbit, under construction or in the planning phase.