Do you want to publish a course? Click here

Underwater Quantum Key Distribution in Outdoor Conditions with Twisted Photons

128   0   0.0 ( 0 )
 Added by Alicia Sit
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum communication has been successfully implemented in optical fibres and through free-space [1-3]. Fibre systems, though capable of fast key rates and low quantum bit error rates (QBERs), are impractical in communicating with destinations without an established fibre link [4]. Free-space quantum channels can overcome such limitations and reach long distances with the advent of satellite-to-ground links [5-8]. Shorter line-of-sight free-space links have also been realized for intra-city conditions [2, 9]. However, turbulence, resulting from local fluctuations in refractive index, becomes a major challenge by adding errors and losses [10]. Recently, an interest in investigating the possibility of underwater quantum channels has arisen, which could provide global secure communication channels among submersibles and boats [11-13]. Here, we investigate the effect of turbulence on an underwater quantum channel using twisted photons in outdoor conditions. We study the effect of turbulence on transmitted QBERs, and compare different QKD protocols in an underwater quantum channel showing the feasibility of high-dimensional encoding schemes. Our work may open the way for secure high-dimensional quantum communication between submersibles, and provides important input for potential submersibles-to-satellite quantum communication.



rate research

Read More

Quantum key distribution (QKD) offers the possibility for two individuals to communicate a securely encrypted message. From the time of its inception in 1984 by Bennett and Brassard, QKD has been the result of intense research. One technical challenge is the monitoring of signal disturbance in a QKD system to bound the information leakage towards an unwanted eavesdropper. Recently, the round-robin differential phase-shift (RRDPS) protocol, which encodes bits of information in a high-dimensional state space, was proposed to solve this exact problem. Since its introduction, many realizations of the RRDPS protocol were demonstrated using trains of coherent pulses. Here, we propose and experimentally demonstrate an implementation of the RRDPS protocol using the photonic orbital angular momentum degree of freedom. In particular, we show that Alices generation stage and Bobs detection stage can each be reduced to a single phase element, greatly simplifying its implementation. Our scheme offers a practical demonstration of the RRDPS protocol which will suppress the need for monitoring signal disturbance in free-space channels.
We present an entangled-state quantum cryptography system that operated for the first time in a real world application scenario. The full key generation protocol was performed in real time between two distributed embedded hardware devices, which were connected by 1.45 km of optical fiber, installed for this experiment in the Vienna sewage system. The generated quantum key was immediately handed over and used by a secure communication application.
Violating a nonlocality inequality enables the most powerful remote quantum information tasks and fundamental tests of physics. Loophole-free photonic verification of nonlocality has been achieved with polarization-entangled photon pairs, but not with states entangled in other degrees of freedom. Here we demonstrate completion of the quantum steering nonlocality task, with the detection loophole closed, when entanglement is distributed by transmitting a photon in an optical vector vortex state, formed by optical orbital angular momentum (OAM) and polarization. The demonstration of vector vortex steering opens the door to new free-space and satellite-based secure quantum communication devices and device-independent protocols.
178 - Yonghe Yu , Wendong Li , Yu Wei 2021
We demonstrate the underwater quantum key distribution (UWQKD) over a 10.4-meter Jerlov type III seawater channel by building a complete UWQKD system with all-optical transmission of quantum signals, synchronization signal and classical communication signal. The wavelength division multiplexing and the space-time-wavelength filtering technology are applied to ensure that the optical signals do not interfere with each other. The system is controlled by FPGA, and can be easily integrated into watertight cabins to perform field experiment. By using the decoy-state BB84 protocol with polarization encoding, we obtain a secure key rate of 1.82Kbps and an error rate of 1.55% at the attenuation of 13.26dB. We prove that the system can tolerate the channel loss up to 23.7dB, therefore may be used in the 300-meter-long Jerlov type I clean seawater channel.
The quantum walk has emerged recently as a paradigmatic process for the dynamic simulation of complex quantum systems, entanglement production and quantum computation. Hitherto, photonic implementations of quantum walks have mainly been based on multi-path interferometric schemes in real space. Here, we report the experimental realization of a discrete quantum walk taking place in the orbital angular momentum space of light, both for a single photon and for two simultaneous photons. In contrast to previous implementations, the whole process develops in a single light beam, with no need of interferometers; it requires optical resources scaling linearly with the number of steps; and it allows flexible control of input and output superposition states. Exploiting the latter property, we explored the system band structure in momentum space and the associated spin-orbit topological features by simulating the quantum dynamics of Gaussian wavepackets. Our demonstration introduces a novel versatile photonic platform for quantum simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا