Do you want to publish a course? Click here

Development of a new UHV/XHV pressure standard (cold atom vacuum standard)

56   0   0.0 ( 0 )
 Added by Julia Scherschligt
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The National Institute of Standards and Technology has recently begun a program to develop a primary pressure standard that is based on ultra-cold atoms, covering a pressure range of 1 x 10-6 to 1 x 10-10 Pa and possibly lower. These pressures correspond to the entire ultra-high vacuum range and extend into the extreme-high vacuum. This cold-atom vacuum standard (CAVS) is both a primary standard and absolute sensor of vacuum. The CAVS is based on the loss of cold, sensor atoms (such as the alkali-metal lithium) from a magnetic trap due to collisions with the background gas (primarily H2) in the vacuum. The pressure is determined from a thermally-averaged collision cross section, which is a fundamental atomic property, and the measured loss rate. The CAVS is primary because it will use collision cross sections determined from ab initio calculations for the Li + H2 system. Primary traceability is transferred to other systems of interest using sensitivity coefficients.



rate research

Read More

Recent advances in the understanding and control of quantum technologies, such as those based on cold atoms, have resulted in devices with extraordinary metrological sensitivities. To realise this potential outside of a lab environment the size, weight and power consumption need to be reduced. Here we demonstrate the use of laser powder bed fusion, an additive manufacturing technique, as a production technique for the components that make up quantum sensors. As a demonstration we have constructed two key components using additive manufacturing, namely magnetic shielding and vacuum chambers. The initial prototypes for magnetic shields show shielding factors within a factor of 3 of conventional approaches. The vacuum demonstrator device shows that 3D-printed titanium structures are suitable for use as vacuum chambers, with the test system reaching base pressures of $5 pm 0.5 times 10^{-10}$ mbar. These demonstrations show considerable promise for the use of additive manufacturing for cold atom based quantum technologies, in future enabling improved integrated structures, allowing for the reduction in size, weight and assembly complexity.
Argon-37 is an environmental signature of an underground nuclear explosion. Producing and quantifying low-level Ar-37 standards is an important step in the development of sensitive field measurement instruments. This paper describes progress at Pacific Northwest National Laboratory in developing a process to generate and quantify low-level Ar-37 standards, which can be used to calibrate sensitive field systems at activities consistent with soil background levels. This paper presents a discussion of the measurement analysis, along with assumptions and uncertainty estimates.
Inertial sensors based on cold atom interferometry exhibit many interesting features for applications related to inertial navigation, particularly in terms of sensitivity and long-term stability. However, at present the typical atom interferometer is still very much an experiment---consisting of a bulky, static apparatus with a limited dynamic range and high sensitivity to environmental effects. To be compliant with mobile applications further development is needed. In this work, we present a compact and mobile experiment, which we recently used to achieve the first inertial measurements with an atomic accelerometer onboard an aircraft. By integrating classical inertial sensors into our apparatus, we are able to operate the atomic sensor well beyond its standard operating range, corresponding to half of an interference fringe. We report atom-based acceleration measurements along both the horizontal and vertical axes of the aircraft with one-shot sensitivities of $2.3 times 10^{-4},g$ over a range of $sim 0.1,g$. The same technology can be used to develop cold-atom gyroscopes, which could surpass the best optical gyroscopes in terms of long-term sensitivity. Our apparatus was also designed to study multi-axis atom interferometry with the goal of realizing a full inertial measurement unit comprised of the three axes of acceleration and rotation. Finally, we present a compact and tunable laser system, which constitutes an essential part of any cold-atom-based sensor. The architecture of the laser is based on phase modulating a single fiber-optic laser diode, and can be tuned over a range of 1 GHz in less than 200 $mu$s.
63 - K. Eckert , P. Hyllus , D. Bruss 2005
We analyze methods to go beyond the standard quantum limit for a class of atomic interferometers, where the quantity of interest is the difference of phase shifts obtained by two independent atomic ensembles. An example is given by an atomic Sagnac interferometer, where for two ensembles propagating in opposite directions in the interferometer this phase difference encodes the angular velocity of the experimental setup. We discuss methods of squeezing separately or jointly observables of the two atomic ensembles, and compare in detail advantages and drawbacks of such schemes. In particular we show that the method of joint squeezing may improve the variance by up to a factor of 2. We take into account fluctuations of the number of atoms in both the preparation and the measurement stage, and obtain bounds on the difference of the numbers of atoms in the two ensembles, as well as on the detection efficiency, which have to be fulfilled in order to surpass the standard quantum limit. Under realistic conditions, the performance of both schemes can be improved significantly by reading out the phase difference via a quantum non-demolition (QND) measurement. Finally, we discuss a scheme using macroscopically entangled ensembles.
134 - Graeme Harvie , Adam Butcher , 2020
We experimentally study the coherence time of a below-threshold Raman laser in which the gain medium is a gas of magneto-optically trapped atoms. The second-order optical coherence exhibits photon bunching with a correlation time which is varied by two orders of magnitude by controlling the gain. Results are in good agreement with a simple analytic model which suggests the effect is dominated by gain, rather than dispersion, in this system. Cavity ring-down measurements show the photon lifetime, related to the first-order coherence time, is also increased.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا