Do you want to publish a course? Click here

Assessment of interaction-strength interpolation formulas for gold and silver clusters

83   0   0.0 ( 0 )
 Added by Eduardo Fabiano
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The performance of functionals based on the idea of interpolating between the weak and the strong-interaction limits the global adiabatic-connection integrand is carefully studied for the challenging case of noble-metal clusters. Different interpolation formulas are considered and various features of this approach are analyzed. It is found that these functionals, when used as a correlation correction to Hartree-Fock, are quite robust for the description of atomization energies, while performing less well for ionization potentials. Future directions that can be envisaged from this study and a previous one on main group chemistry are discussed.



rate research

Read More

We have tested the original interaction-strength-interpolation (ISI) exchange-correlation functional for main group chemistry. The ISI functional is based on an interpolation between the weak and strong coupling limits and includes exact-exchange as well as the Gorling-Levy second-order energy. We have analyzed in detail the basis-set dependence of the ISI functional, its dependence on the ground-state orbitals, and the influence of the size-consistency problem. We show and explain some of the expected limitations of the ISI functional (i.e. for atomization energies), but also unexpected results, such as the good performance for the interaction energy of dispersion-bonded complexes when the ISI correlation is used as a correction to Hartree-Fock.
Using calculations from first principles, we herein consider the bond made between thiolat e with a range of different Au clusters, with a particular focus on the spin moments inv olved in each case. For odd number of gold atoms, the clusters show a spin moment of 1.~ $mu_B$. The variation of spin moment with particle size is particularly dramatic, with t he spin moment being zero for even numbers of gold atoms. This variation may be linked w ith changes in the odd-even oscillations that occur with the number of gold atoms, and is associated with the formation of a S-Au bond. This bond leads to the presence of an extra electron that is mainly sp in character in the gold part. Our results sugg est that any thiolate-induced magnetism that occurs in gold nanoparticles may be locali zed in a shell below the surface, and can be controlled by modifying the coverage of the thiolates.
Semi-local approximations to the density functional for the exchange-correlation energy of a many-electron system necessarily fail for lobed one-electron densities, including not only the familiar stretched densities but also the less familiar but closely-related noded ones. The Perdew-Zunger (PZ) self-interaction correction (SIC) to a semi-local approximation makes that approximation exact for all one-electron ground- or excited-state densities and accurate for stretched bonds. When the minimization of the PZ total energy is made over real localized orbitals, the orbital densities can be noded, leading to energy errors in many-electron systems. Minimization over complex localized orbitals yields nodeless orbital densities, which reduce but typically do not eliminate the SIC errors of atomization energies. Other errors of PZ SIC remain, attributable to the loss of the exact constraints and appropriate norms that the semi-local approximations satisfy, and suggesting the need for a generalized SIC. These conclusions are supported by calculations for one-electron densities, and for many-electron molecules. While PZ SIC raises and improves the energy barriers of standard generalized gradient approximations (GGAs) and meta-GGAs, it reduces and often worsens the atomization energies of molecules. Thus PZ SIC raises the energy more as the nodality of the valence localized orbitals increases from atoms to molecules to transition states. PZ SIC is applied here in particular to the SCAN meta-GGA, for which the correlation part is already self-interaction-free. That property makes SCAN a natural first candidate for a generalized SIC.
MOLSCAT is a general-purpose package for performing non-reactive quantum scattering calculations for atomic and molecular collisions using coupled-channel methods. Simple atom-molecule and molecule-molecule collision types are coded internally and additional ones may be handled with plug-in routines. Plug-in routines may include external magnetic, electric or photon fields (and combinations of them). Simple interaction potentials are coded internally and more complicated ones may be handled with plug-in routines. BOUND is a general-purpose package for performing calculations of bound-state energies in weakly bound atomic and molecular systems using coupled-channel methods. It solves the same sets of coupled equations as MOLSCAT, and can use the same plug-in routines if desired, but with different boundary conditions. FIELD is a development of BOUND that locates external fields at which a bound state exists with a specified energy. One important use is to locate the positions of magnetically tunable Feshbach resonance positions in ultracold collisions. Versions of these programs before version 2019.0 were released separately. However, there is a significant degree of overlap between their internal structures and usage specifications. This manual therefore describes all three, with careful identification of parts that are specific to one or two of the programs.
56 - Y. Niimi , T. Matsui , H. Kambara 2004
We studied experimentally and theoretically the electronic local density of states (LDOS) near single step edges at the surface of exfoliated graphite. In scanning tunneling microscopy measurements, we observed the $(sqrt{3} times sqrt{3}) R 30^{circ}$ and honeycomb superstructures extending over 3$-$4 nm both from the zigzag and armchair edges. Calculations based on a density-functional derived non-orthogonal tight-binding model show that these superstructures can coexist if the two types of edges admix each other in real graphite step edges. Scanning tunneling spectroscopy measurements near the zigzag edge reveal a clear peak in the LDOS at an energy below the Fermi energy by 20 meV. No such a peak was observed near the armchair edge. We concluded that this peak corresponds to the edge state theoretically predicted for graphene ribbons, since a similar prominent LDOS peak due to the edge state is obtained by the first principles calculations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا