Do you want to publish a course? Click here

Almost Optimal Scaling of Reed-Muller Codes on BEC and BSC Channels

61   0   0.0 ( 0 )
 Added by Hamed Hassani
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Consider a binary linear code of length $N$, minimum distance $d_{text{min}}$, transmission over the binary erasure channel with parameter $0 < epsilon < 1$ or the binary symmetric channel with parameter $0 < epsilon < frac12$, and block-MAP decoding. It was shown by Tillich and Zemor that in this case the error probability of the block-MAP decoder transitions quickly from $delta$ to $1-delta$ for any $delta>0$ if the minimum distance is large. In particular the width of the transition is of order $O(1/sqrt{d_{text{min}}})$. We strengthen this result by showing that under suitable conditions on the weight distribution of the code, the transition width can be as small as $Theta(1/N^{frac12-kappa})$, for any $kappa>0$, even if the minimum distance of the code is not linear. This condition applies e.g., to Reed-Mueller codes. Since $Theta(1/N^{frac12})$ is the smallest transition possible for any code, we speak of almost optimal scaling. We emphasize that the width of the transition says nothing about the location of the transition. Therefore this result has no bearing on whether a code is capacity-achieving or not. As a second contribution, we present a new estimate on the derivative of the EXIT function, the proof of which is based on the Blowing-Up Lemma.



rate research

Read More

We introduce a new approach to proving that a sequence of deterministic linear codes achieves capacity on an erasure channel under maximum a posteriori decoding. Rather than relying on the precise structure of the codes our method exploits code symmetry. In particular, the technique applies to any sequence of linear codes where the blocklengths are strictly increasing, the code rates converge, and the permutation group of each code is doubly transitive. In other words, we show that symmetry alone implies near-optimal performance. An important consequence of this result is that a sequence of Reed-Muller codes with increasing blocklength and converging rate achieves capacity. This possibility has been suggested previously in the literature but it has only been proven for cases where the limiting code rate is 0 or 1. Moreover, these results extend naturally to all affine-invariant codes and, thus, to extended primitive narrow-sense BCH codes. This also resolves, in the affirmative, the existence question for capacity-achieving sequences of binary cyclic codes. The primary tools used in the proof are the sharp threshold property for symmetric monotone boolean functions and the area theorem for extrinsic information transfer functions.
135 - J. Pujol , J. Rif`a , L. Ronquillo 2009
The well known Plotkin construction is, in the current paper, generalized and used to yield new families of Z2Z4-additive codes, whose length, dimension as well as minimum distance are studied. These new constructions enable us to obtain families of Z2Z4-additive codes such that, under the Gray map, the corresponding binary codes have the same parameters and properties as the usual binary linear Reed-Muller codes. Moreover, the first family is the usual binary linear Reed-Muller family.
The famous Barnes-Wall lattices can be obtained by applying Construction D to a chain of Reed-Muller codes. By applying Construction ${{D}}^{{(cyc)}}$ to a chain of extended cyclic codes sandwiched between Reed-Muller codes, Hu and Nebe (J. London Math. Soc. (2) 101 (2020) 1068-1089) constructed new series of universally strongly perfect lattices sandwiched between Barnes-Wall lattices. In this paper, we explicitly determine the minimum weight codewords of those codes for some special cases.
New quaternary Plotkin constructions are given and are used to obtain new families of quaternary codes. The parameters of the obtained codes, such as the length, the dimension and the minimum distance are studied. Using these constructions new families of quaternary Reed-Muller codes are built with the peculiarity that after using the Gray map the obtained Z4-linear codes have the same parameters and fundamental properties as the codes in the usual binary linear Reed-Muller family. To make more evident the duality relationships in the constructed families the concept of Kronecker inner product is introduced.
The question whether RM codes are capacity-achieving is a long-standing open problem in coding theory that was recently answered in the affirmative for transmission over erasure channels [1], [2]. Remarkably, the proof does not rely on specific properties of RM codes, apart from their symmetry. Indeed, the main technical result consists in showing that any sequence of linear codes, with doubly-transitive permutation groups, achieves capacity on the memoryless erasure channel under bit-MAP decoding. Thus, a natural question is what happens under block-MAP decoding. In [1], [2], by exploiting further symmetries of the code, the bit-MAP threshold was shown to be sharp enough so that the block erasure probability also converges to 0. However, this technique relies heavily on the fact that the transmission is over an erasure channel. We present an alternative approach to strengthen results regarding the bit-MAP threshold to block-MAP thresholds. This approach is based on a careful analysis of the weight distribution of RM codes. In particular, the flavor of the main result is the following: assume that the bit-MAP error probability decays as $N^{-delta}$, for some $delta>0$. Then, the block-MAP error probability also converges to 0. This technique applies to transmission over any binary memoryless symmetric channel. Thus, it can be thought of as a first step in extending the proof that RM codes are capacity-achieving to the general case.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا