Do you want to publish a course? Click here

Virtually abelian subgroups of $IA_n(Z/3)$ are abelian

75   0   0.0 ( 0 )
 Added by Michael Handel
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

When studying subgroups of $Out(F_n)$, one often replaces a given subgroup $H$ with one of its finite index subgroups $H_0$ so that virtual properties of $H$ become actual properties of $H_0$. In many cases, the finite index subgroup is $H_0 = H cap IA_n(Z/3)$. For which properties is this a good choice? Our main theorem states that being abelian is such a property. Namely, every virtually abelian subgroup of $IA_n(Z/3)$ is abelian.



rate research

Read More

We show that the epimorphism problem is solvable for targets that are virtually cyclic or a product of an Abelian group and a finite group.
In a recent paper of the first author and I. M. Isaacs it was shown that if m = m(G) is the maximal order of an abelian subgroup of the finite group G, then |G| divides m! ([AI18, Thm. 5.2]). The purpose of this brief note is to improve on the m! bound (see Theorem 2.1 below). We shall then take up the task of determining when the (implicit) inequality of our theorem becomes an equality. Despite, perhaps, first appearances this determination is not trivial. To accomplish it we shall establish a result (Theorem 2.3) of independent interest and we shall then see that Theorems 2.1 and 2.3 combine to further strengthen Theorem 2.1 (see Theorem 3.4).
Motivated in part by representation theoretic questions, we prove that if G is a finite quasi-simple group, then there exists an elementary abelian subgroup of G that intersects every conjugacy class of involutions of G.
214 - Ellen Henke , Jun Liao 2016
We prove that an isomorphism between saturated fusion systems over the same finite p-group is detected on the elementary abelian subgroups of the hyperfocal subgroup if p is odd, and on the abelian subgroups of the hyperfocal subgroup of exponent at most 4 if p = 2. For odd p, this has implications for mod p group cohomology.
The article deals with profinite groups in which the centralizers are abelian (CA-groups), that is, with profinite commutativity-transitive groups. It is shown that such groups are virtually pronilpotent. More precisely, let G be a profinite CA-group. It is shown that G has a normal open subgroup N which is either abelian or pro-p. Further, a rather detailed information about the finite quotient G/N is obtained.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا