No Arabic abstract
The open-charm strong decays of higher charmonium states up to the mass of the $6P$ multiplet are systematically studied in the $^3P_0$ model. The wave functions of the initial charmonium states are calculated in the linear potential (LP) and screened potential (SP) quark model. The decay widths for most of the well-established charmonium states above the open-charm thresholds can be reasonably described. By comparing our quark model calculations with the experimental observations we also discuss the nature of some of the newly observed charmonium-like states. It is found that (i) the $psi(4415)$ may favor the $psi(4S)$ or $psi_1(3D)$ assignment. There may exist two highly overlapping vector charmonium states around 4.4 GeV; (ii) In the LP model the $J^{PC}=1^{--}$ $Y(4660)$ resonance and the $J^{PC}=0^{++}$ $X(4500)$ resonance may be assigned as the $psi(5S)$ and $chi_{c0}(4P)$, respectively; (iii) The newly observed state $X^*(3860)$ can be assigned as the $chi_{c0}(2P)$ state with a narrow width of about $30$ MeV; (iv) It seems to be difficult to accommodate the $X(4140)$ and $X(4274)$ states in the same potential model as excited $chi_{c1}$ states. (v) The $X(3940)$ resonance can be assigned as the $eta_c(3S)$ state; (vi) The vector charmonium-like states $Y(4230/4260,4360)$ and scalar $X(4700)$ cannot be described by any conventional charmonium states self-consistently in our model.
The mass modifications of the open charm ($D$ and $D^*$) mesons, and their effects on the decay widths $D^*rightarrow Dpi$ as well as of the charmonium state, $Psi(3770)$ to open charm mesons ($Psi(3770)rightarrow Dbar D$), are investigated in the presence of strong magnetic fields. These are studied accounting for the mixing of the pseudoscalar ($P$) and vector ($V$) mesons ($D-D^*$, $eta_c-Psi(3770)$ mixings), with the mixing parameter, $g_{PV}$ of a phenomenological three-point ($PVgamma$) vertex interaction determined from the observed radiative decay width of $Vrightarrow Pgamma$. For charged $D-D^*$ mixing, this parameter is dependent on the magnetic field, because of the Landau level contributions to the vacuum masses of these mesons. The masses of the charged $D$ and $D^*$ mesons modified due to $PV$ mixing, in addition, have contributions from the lowest Landau levels in the presence of a strong magnetic field. The effects of the magnetic field on the decay widths are studied using a field theoretic model of composite hadrons with quark (and antiquark) consittuents. The parameter for the charged $D-D^*$ mixing is observed to increase appreciably with increase in the magnetic field. This leads to dominant modifications to their masses, and hence the decay widths of charged $D^*rightarrow Dpi$ as well as $Psi(3770)rightarrow D^+D^-$ at large values of the magnetic field. The modifications of the masses and decay widths of the open and hidden charm mesons in the presence of strong magnetic fields should have observable consequences on the production of the open charm ($D$ and $D^*$) mesons as well as of the charmonium states resulting from non-central ultrarelativistic heavy ion collision experiments.
In the present work, we study the OZI-allowed three body open flavor decay properties of higher vector charmonium and bottomonium states with an extended quark pair creation model. For the bottomonium system, we get that (i) the $BBpi$ and $B^*B^*pi$ partial decay widths of the $Upsilon(5S)$ state are consistent with the experiment, and the $BB^*pi$ partial decay width of the $Upsilon(5S)$ state is smaller but very close to the Belles experiment. Meanwhile, (ii) the $BB^*pi$ and $B^*B^*pi$ decay widths of $Upsilon(11020)$ can reachs $2sim3$ MeV. In addition, (iii) for the most of higher vector charmonium states, the partial decay widths of the $DD^*pi$ and $D^*D^*pi$ modes can reach up to several MeV, which may be observed in future experiments.
We study strong decays of the possible fully-charm tetraquarks recently observed by LHCb, and calculate their relative branching ratios through the Fierz rearrangement. Together with our previous QCD sum rule study [Phys. Lett. B 773, 247 (2017)], our results suggest that the broad structure around $6.2$-$6.8$ GeV can be interpreted as an $S$-wave $ccbar c bar c$ tetraquark state with $J^{PC} = 0^{++}$ or $2^{++}$, and the narrow structure around 6.9 GeV can be interpreted as a $P$-wave one with $J^{PC} = 0^{-+}$ or $1^{-+}$. These structures were observed in the di-$J/psi$ invariant mass spectrum, and we propose to confirm them in the di-$eta_c$, $J/psi h_c$, $eta_c chi_{c0}$, and $eta_c chi_{c1}$ channels. We also propose to search for their partner states having the negative charge-conjugation parity in the $J/psi eta_c$, $J/psi chi_{c0}$, $J/psi chi_{c1}$, and $eta_c h_c$ channels.
We analyse the consequences of the usual assumption of a constant function to fit non-resonant decays from experimental Dalitz plot describing charmed meson decays. We first show, using the $D^+to bar{K}^0pi^+pi^0$ decay channel as an example, how an inadequate extraction of the non-resonant contribution could yield incorrect measurements for the resonant channels. We analyse how the correct study of this decay will provide a test for the validity of factorization in D meson decays. Finally, we show how form factors could be extracted from non-resonant decays. We particularly discuss about the form factor that can be measured from the $D^+_sto pi^-pi^+pi^+$ decay. We emphasize on its relevance for the study of the decay $tau to u_{tau} 3pi$ and the extraction of the $a_1$ meson width.
In this work, we calculate the branching ratios for the $eta(eta)rightarrowbar{ell}ell$ decays, where $ell = e,mu$. These processes have tiny rates in the standard model due to spin flip, loop, and electromagnetic suppression, for what they could be sensitive to New Physics effects. In order to provide a reliable input for the Standard Model, we exploit the general analytical properties of the amplitude. For that purpose, we invoke the machinery of Canterbury approximants, which provides a systematic description of the underlying hadronic physics in a data-driven fashion. Given the current experimental discrepancies, we discuss in detail the role of the resonant region and comment on the reliability of $chi$PT calculations. Finally, we discuss the kind of new physics which we think would be relevant to account for them.