Do you want to publish a course? Click here

Open charm and charmonium states in strong magnetic fields

75   0   0.0 ( 0 )
 Added by Amruta Mishra
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

The mass modifications of the open charm ($D$ and $D^*$) mesons, and their effects on the decay widths $D^*rightarrow Dpi$ as well as of the charmonium state, $Psi(3770)$ to open charm mesons ($Psi(3770)rightarrow Dbar D$), are investigated in the presence of strong magnetic fields. These are studied accounting for the mixing of the pseudoscalar ($P$) and vector ($V$) mesons ($D-D^*$, $eta_c-Psi(3770)$ mixings), with the mixing parameter, $g_{PV}$ of a phenomenological three-point ($PVgamma$) vertex interaction determined from the observed radiative decay width of $Vrightarrow Pgamma$. For charged $D-D^*$ mixing, this parameter is dependent on the magnetic field, because of the Landau level contributions to the vacuum masses of these mesons. The masses of the charged $D$ and $D^*$ mesons modified due to $PV$ mixing, in addition, have contributions from the lowest Landau levels in the presence of a strong magnetic field. The effects of the magnetic field on the decay widths are studied using a field theoretic model of composite hadrons with quark (and antiquark) consittuents. The parameter for the charged $D-D^*$ mixing is observed to increase appreciably with increase in the magnetic field. This leads to dominant modifications to their masses, and hence the decay widths of charged $D^*rightarrow Dpi$ as well as $Psi(3770)rightarrow D^+D^-$ at large values of the magnetic field. The modifications of the masses and decay widths of the open and hidden charm mesons in the presence of strong magnetic fields should have observable consequences on the production of the open charm ($D$ and $D^*$) mesons as well as of the charmonium states resulting from non-central ultrarelativistic heavy ion collision experiments.



rate research

Read More

The open-charm strong decays of higher charmonium states up to the mass of the $6P$ multiplet are systematically studied in the $^3P_0$ model. The wave functions of the initial charmonium states are calculated in the linear potential (LP) and screened potential (SP) quark model. The decay widths for most of the well-established charmonium states above the open-charm thresholds can be reasonably described. By comparing our quark model calculations with the experimental observations we also discuss the nature of some of the newly observed charmonium-like states. It is found that (i) the $psi(4415)$ may favor the $psi(4S)$ or $psi_1(3D)$ assignment. There may exist two highly overlapping vector charmonium states around 4.4 GeV; (ii) In the LP model the $J^{PC}=1^{--}$ $Y(4660)$ resonance and the $J^{PC}=0^{++}$ $X(4500)$ resonance may be assigned as the $psi(5S)$ and $chi_{c0}(4P)$, respectively; (iii) The newly observed state $X^*(3860)$ can be assigned as the $chi_{c0}(2P)$ state with a narrow width of about $30$ MeV; (iv) It seems to be difficult to accommodate the $X(4140)$ and $X(4274)$ states in the same potential model as excited $chi_{c1}$ states. (v) The $X(3940)$ resonance can be assigned as the $eta_c(3S)$ state; (vi) The vector charmonium-like states $Y(4230/4260,4360)$ and scalar $X(4700)$ cannot be described by any conventional charmonium states self-consistently in our model.
In this work we study the influence of a strong magnetic field on the composition of nuclear matter at T=0 including the anomalous magnetic moment (AMM) of baryons.
We investigate the in-medium masses of open charm mesons ($D$($D^0$, $D^+$), $bar{D}$($bar{D^0}$, $D^-$), $D_s$(${D_{s}}^+$, ${D_{s}}^-$)) and charmonium states ($J/psi$, $psi(3686)$, $psi(3770)$, $chi_{c0}$, $chi_{c2}$) in strongly magnetized isospin asymmetric strange hadronic matter using a chiral effective model. In the presence of the magnetic field, the number density and scalar density of charged baryons have contributions from Landau energy levels. The mass modifications of open charm mesons arise due to their interactions with nucleons, hyperons, and the scalar fields (the non-strange field $sigma$, strange field $zeta$ and isovector field $delta$) in the presence of the magnetic field. The mass modifications of the charmonium states arise from the variation of dilaton field ($chi$) in the magnetized medium, which simulates the gluon condensates of QCD. The in-medium mass of open charm mesons and charmonia are observed to decrease with an increase in baryon density, whereas the charged $D^+$, $D^-$, ${D_{s}}^+$ and ${D_{s}}^-$ mesons have additional positive mass shifts due to Landau quantization in the presence of the magnetic field. The effects of strangeness fraction are found to be more dominant for the $bar{D}$ mesons as compared to the $D$ mesons. The mass shifts of charmonia are observed to be larger in hyperonic medium compared to the nuclear medium.
106 - Amruta Mishra , S.P. Misra 2020
The masses and decay widths of charmonium states are studied in the presence of strong magnetic fields. The mixing between the pseudoscalar and vector charmonium states at rest is observed to lead to appreciable negative (positive) shifts in the masses of the pseudoscalar (longitudinal component of the vector) charmonium states in vacuum/hadronic medium in the presence of high magnetic fields. The pseudoscalar and vector charmonium masses in the hadronic medium, calculated in an effective chiral model from the medium changes of a scalar dilaton field, have additional significant modifications due to the mixing effects. The masses of the $D$ and $bar D$ mesons in the magnetized hadronic matter are calculated within the chiral effective model. The partial decay widths of the vector charmonium state to $Dbar D$ are computed using a field theoretical model for composite hadrons with quark/antiquark constituents, and are compared to the decay widths calculated using an effective hadronic Lagrangian. The effects of the mixing are observed to lead to significant contributions to the masses of the pseusoscalar and vector charmonium states, and an appreciable increase in the decay width $psi(3770) rightarrow Dbar D$ at large values of the magnetic fields. These studies of the charmonium states in strong magnetic fields should have observable consequences on the dilepton spectra, as well as on the production of the open charm mesons and the charmonium states in ultra relativistic heavy ion collision experiments.
We analyze the open charm production in the binary $pi p to bar{D} Lambda_c$ and $pi(rho) J/psi$ reactions within the Regge theory including the absorption corrections. The calculations show that the total cross section is about a few $mu$b for the first processes and a few mb for the second reactions at energy close to the threshold. Then it decreases with increasing energy according to the true Regge asymptotics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا