Do you want to publish a course? Click here

DKN: Deep Knowledge-Aware Network for News Recommendation

229   0   0.0 ( 0 )
 Added by Hongwei Wang
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Online news recommender systems aim to address the information explosion of news and make personalized recommendation for users. In general, news language is highly condensed, full of knowledge entities and common sense. However, existing methods are unaware of such external knowledge and cannot fully discover latent knowledge-level connections among news. The recommended results for a user are consequently limited to simple patterns and cannot be extended reasonably. Moreover, news recommendation also faces the challenges of high time-sensitivity of news and dynamic diversity of users interests. To solve the above problems, in this paper, we propose a deep knowledge-aware network (DKN) that incorporates knowledge graph representation into news recommendation. DKN is a content-based deep recommendation framework for click-through rate prediction. The key component of DKN is a multi-channel and word-entity-aligned knowledge-aware convolutional neural network (KCNN) that fuses semantic-level and knowledge-level representations of news. KCNN treats words and entities as multiple channels, and explicitly keeps their alignment relationship during convolution. In addition, to address users diverse interests, we also design an attention module in DKN to dynamically aggregate a users history with respect to current candidate news. Through extensive experiments on a real online news platform, we demonstrate that DKN achieves substantial gains over state-of-the-art deep recommendation models. We also validate the efficacy of the usage of knowledge in DKN.



rate research

Read More

231 - Tao Qi , Fangzhao Wu , Chuhan Wu 2021
The most important task in personalized news recommendation is accurate matching between candidate news and user interest. Most of existing news recommendation methods model candidate news from its textual content and user interest from their clicked news in an independent way. However, a news article may cover multiple aspects and entities, and a user usually has different kinds of interest. Independent modeling of candidate news and user interest may lead to inferior matching between news and users. In this paper, we propose a knowledge-aware interactive matching method for news recommendation. Our method interactively models candidate news and user interest to facilitate their accurate matching. We design a knowledge-aware news co-encoder to interactively learn representations for both clicked news and candidate news by capturing their relatedness in both semantic and entities with the help of knowledge graphs. We also design a user-news co-encoder to learn candidate news-aware user interest representation and user-aware candidate news representation for better interest matching. Experiments on two real-world datasets validate that our method can effectively improve the performance of news recommendation.
Interactive recommendation aims to learn from dynamic interactions between items and users to achieve responsiveness and accuracy. Reinforcement learning is inherently advantageous for coping with dynamic environments and thus has attracted increasing attention in interactive recommendation research. Inspired by knowledge-aware recommendation, we proposed Knowledge-Guided deep Reinforcement learning (KGRL) to harness the advantages of both reinforcement learning and knowledge graphs for interactive recommendation. This model is implemented upon the actor-critic network framework. It maintains a local knowledge network to guide decision-making and employs the attention mechanism to capture long-term semantics between items. We have conducted comprehensive experiments in a simulated online environment with six public real-world datasets and demonstrated the superiority of our model over several state-of-the-art methods.
News articles usually contain knowledge entities such as celebrities or organizations. Important entities in articles carry key messages and help to understand the content in a more direct way. An industrial news recommender system contains various key applications, such as personalized recommendation, item-to-item recommendation, news category classification, news popularity prediction and local news detection. We find that incorporating knowledge entities for better document understanding benefits these applications consistently. However, existing document understanding models either represent news articles without considering knowledge entities (e.g., BERT) or rely on a specific type of text encoding model (e.g., DKN) so that the generalization ability and efficiency is compromised. In this paper, we propose KRED, which is a fast and effective model to enhance arbitrary document representation with a knowledge graph. KRED first enriches entities embeddings by attentively aggregating information from their neighborhood in the knowledge graph. Then a context embedding layer is applied to annotate the dynamic context of different entities such as frequency, category and position. Finally, an information distillation layer aggregates the entity embeddings under the guidance of the original document representation and transforms the document vector into a new one. We advocate to optimize the model with a multi-task framework, so that different news recommendation applications can be united and useful information can be shared across different tasks. Experiments on a real-world Microsoft News dataset demonstrate that KRED greatly benefits a variety of news recommendation applications.
Aiming to alleviate data sparsity and cold-start problems of traditional recommender systems, incorporating knowledge graphs (KGs) to supplement auxiliary information has recently gained considerable attention. Via unifying the KG with user-item interactions into a tripartite graph, recent works explore the graph topologies to learn the low-dimensional representations of users and items with rich semantics. However, these real-world tripartite graphs are usually scale-free, the intrinsic hierarchical graph structures of which are underemphasized in existing works, consequently, leading to suboptimal recommendation performance. To address this issue and provide more accurate recommendation, we propose a knowledge-aware recommendation method with the hyperbolic geometry, namely Lorentzian Knowledge-enhanced Graph convolutional networks for Recommendation (LKGR). LKGR facilitates better modeling of scale-free tripartite graphs after the data unification. Specifically, we employ different information propagation strategies in the hyperbolic space to explicitly encode heterogeneous information from historical interactions and KGs. Our proposed knowledge-aware attention mechanism enables the model to automatically measure the information contribution, producing the coherent information aggregation in the hyperbolic space. Extensive experiments on three real-world benchmarks demonstrate that LKGR outperforms state-of-the-art methods by 2.2-29.9% of Recall@20 on Top-K recommendation.
77 - Zhi Bian , Shaojun Zhou , Hao Fu 2021
For better user satisfaction and business effectiveness, more and more attention has been paid to the sequence-based recommendation system, which is used to infer the evolution of users dynamic preferences, and recent studies have noticed that the evolution of users preferences can be better understood from the implicit and explicit feedback sequences. However, most of the existing recommendation techniques do not consider the noise contained in implicit feedback, which will lead to the biased representation of user interest and a suboptimal recommendation performance. Meanwhile, the existing methods utilize item sequence for capturing the evolution of user interest. The performance of these methods is limited by the length of the sequence, and can not effectively model the long-term interest in a long period of time. Based on this observation, we propose a novel CTR model named denoising user-aware memory network (DUMN). Specifically, the framework: (i) proposes a feature purification module based on orthogonal mapping, which use the representation of explicit feedback to purify the representation of implicit feedback, and effectively denoise the implicit feedback; (ii) designs a user memory network to model the long-term interests in a fine-grained way by improving the memory network, which is ignored by the existing methods; and (iii) develops a preference-aware interactive representation component to fuse the long-term and short-term interests of users based on gating to understand the evolution of unbiased preferences of users. Extensive experiments on two real e-commerce user behavior datasets show that DUMN has a significant improvement over the state-of-the-art baselines. The code of DUMN model has been uploaded as an additional material.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا