No Arabic abstract
We reveal the nature of propagation and reflection of light in Weyl metals with broken time reversal symmetry, whose electromagnetic properties are described by axion electrodynamics. These Weyl metals turn out to play the role of a chiral prism: An incident monochromatic wave can split into three waves propagating with different wave numbers, depending on its chirality and polarization (right $&$ left circular polarizations and linear polarization along the propagating direction). The helicity of the propagating/reflected light is determined by $textbf{B}_{ext}$ and $textbf{E}_{light}$, where $textbf{B}_{ext}$ is the gradient of the $theta-$field in the axion term given by the applied magnetic field and $textbf{E}_{light}$ is the electric-field component of the incident light. This implies that the direction of the external magnetic field controls the Faraday/Kerr rotation. In particular, we find that the linear polarization of the oscillating electric field along the propagating direction, which cannot occur in conventional metals, arises when Weyl nodes are aligned along the oscillating magnetic field. We evaluate both transmission/reflection coefficients and Faraday/Kerr rotation angles as a function of both an external magnetic field and frequency for various configurations of light propagation. We propose their strong magnetic-field dependencies as one of the fingerprints of the axion electrodynamics.
By studying the rotations of the polarization of light propagating in right and left handed films, with emphasis on the transmission (Faraday effect) and reflec- tions (Kerr effect) of light and through the use of complex values representing the rotations, it can be shown that the real portions of the complex angle of Faraday and Kerr rotations are odd functions with respect to the refractive index n and that the respective imaginary portions of the angles are an even function of n. Multiple reflections within the medium lead to the maximums of the real portions of Faraday and Kerr effects to not coincide with zero ellipticity. It will also be shown that in the thin film case with left handed materials there are large resonant enhancements of the reflected Kerr angle that could be obtained experimentally.
Far infrared magneto-transmission spectroscopy has been used to probe relativistic fermions in highly oriented pyrolytic and natural graphite. Nearly identical transmission spectra of those two materials are obtained, giving the signature of Dirac fermions via absorption lines with an energy that scales as sqrt{B}. The Fermi velocity is evaluated to be c*=1.02x10^6 m/s and the pseudogap at the H point is estimated to be below 10 meV.
Recent angle resolved photoemission spectroscopy measurements on strong spin-orbit coupled materials have shown an in-plane orbital texture switch at their respective Dirac points, regardless of whether they are topological insulators or trivial Rashba materials. This feature has also been demonstrated in a few materials ($text{Bi}_2text{Se}_3$, $text{Bi}_2text{Te}_3$, and $text{BiTeI}$) though DFT calculations. Here we present a minimal orbital-derived tight binding model to calculate the electron wave-function in a two-dimensional crystal lattice. We show that the orbital components of the wave-function demonstrate an orbital-texture switch in addition to the usual spin switch seen in spin polarized bands. This orbital texture switch is determined by the existence of three main properties: local or global inversion symmetry breaking, strong spin-orbit coupling, and non-local physics (the electrons are on a lattice). Using our model we demonstrate that the orbital texture switch is ubiquitous and to be expected in many real systems. The orbital hybridization of the bands is the key aspect for understanding the unique wave function properties of these materials, and this minimal model helps to establish the quantum perturbations that drive these hybridizations.
Using the spin wave approximation, we study the decoherence dynamics of a central spin coupled to an antiferromagnetic environment under the application of an external global magnetic field. The external magnetic field affects the decoherence process through its effect on the antiferromagnetic environment. It is shown explicitly that the decoherence factor which displays a Gaussian decay with time depends on the strength of the external magnetic field and the crystal anisotropy field in the antiferromagnetic environment. When the values of the external magnetic field is increased to the critical field point at which the spin-flop transition (a first-order quantum phase transition) happens in the antiferromagnetic environment, the decoherence of the central spin reaches its highest point. This result is consistent with several recent quantum phase transition witness studies. The influences of the environmental temperature on the decoherence behavior of the central spin are also investigated.
Constructing an effective field theory in terms of doped magnetic impurities (described by an O(3) vector model with a random mass term), itinerant electrons of spin-orbit coupled semiconductors (given by a Dirac theory with a relatively large mass term), and effective interactions between doped magnetic ions and itinerant electrons (assumed by an effective Zeeman coupling term), we perform the perturbative renormalization group analysis in the one-loop level based on the dimensional regularization technique. As a result, we find that the mass renormalization in dynamics of itinerant electrons acquires negative feedback effects due to quantum fluctuations involved with the Zeeman coupling term, in contrast with that of the conventional problem of quantum electrodynamics, where such interaction effects enhance the fermion mass more rapidly. Recalling that the applied magnetic field decreases the band gap in the presence of spin-orbit coupling, this renormalization group analysis shows that the external magnetic field overcomes the renormalized band gap, allowed by doped magnetic impurities even without ferromagnetic ordering. In other words, the Weyl metal physics can be controlled by doping magnetic impurities into spin-orbit coupled semiconductors, even if the external magnetic field alone cannot realize the Weyl metal phase due to relatively large band gaps of semiconductors. Furthermore, we emphasize that quasiparticles do not exist in this emergent disordered Weyl metal phase due to correlations with strong magnetic fluctuations. This non-Fermi liquid type Weyl metal state may be regarded to be a novel metallic phase in the respect that a topologically nontrivial band structure appears in the vicinity of quantum criticality.