Do you want to publish a course? Click here

Internal Universes in Models of Homotopy Type Theory

445   0   0.0 ( 0 )
 Added by Andrew Pitts
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We begin by recalling the essentially global character of universes in various models of homotopy type theory, which prevents a straightforward axiomatization of their properties using the internal language of the presheaf toposes from which these model are constructed. We get around this problem by extending the internal language with a modal operator for expressing properties of global elements. In this setting we show how to construct a universe that classifies the Cohen-Coquand-Huber-Mortberg (CCHM) notion of fibration from their cubical sets model, starting from the assumption that the interval is tiny - a property that the interval in cubical sets does indeed have. This leads to an elementary axiomatization of that and related models of homotopy type theory within what we call crisp type theory.



rate research

Read More

We present a development of the theory of higher groups, including infinity groups and connective spectra, in homotopy type theory. An infinity group is simply the loops in a pointed, connected type, where the group structure comes from the structure inherent in the identity types of Martin-Lof type theory. We investigate ordinary groups from this viewpoint, as well as higher dimensional groups and groups that can be delooped more than once. A major result is the stabilization theorem, which states that if an $n$-type can be delooped $n+2$ times, then it is an infinite loop type. Most of the results have been formalized in the Lean proof assistant.
We define a computational type theory combining the contentful equality structure of cartesian cubical type theory with internal parametricity primitives. The combined theory supports both univalence and its relational equivalent, which we call relativity. We demonstrate the use of the theory by analyzing polymorphic functions between higher inductive types, observe how cubical equality regularizes parametric type theory, and examine the similarities and discrepancies between cubical and parametric type theory, which are closely related. We also abstract a formal interface to the computational interpretation and show that this also has a presheaf model.
The ALEA Coq library formalizes measure theory based on a variant of the Giry monad on the category of sets. This enables the interpretation of a probabilistic programming language with primitives for sampling from discrete distributions. However, continuous distributions have to be discretized because the corresponding measures cannot be defined on all subsets of their carriers. This paper proposes the use of synthetic topology to model continuous distributions for probabilistic computations in type theory. We study the initial $sigma$-frame and the corresponding induced topology on arbitrary sets. Based on these intrinsic topologies we define valuations and lower integrals on sets, and pro
We report on the development of the HoTT library, a formalization of homotopy type theory in the Coq proof assistant. It formalizes most of basic homotopy type theory, including univalence, higher inductive types, and significant amounts of synthetic homotopy theory, as well as category theory and modalities. The library has been used as a basis for several independent developments. We discuss the decisions that led to the design of the library, and we comment on the interaction of homotopy type theory with recently introduced features of Coq, such as universe polymorphism and private inductive types.
This paper introduces a new family of models of intensional Martin-Lof type theory. We use constructive ordered algebra in toposes. Identity types in the models are given by a notion of Moore path. By considering a particular gros topos, we show that there is such a model that is non-truncated, i.e. contains non-trivial structure at all dimensions. In other words, in this model a type in a nested sequence of identity types can contain more than one element, no matter how great the degree of nesting. Although inspired by existing non-truncated models of type theory based on simplicial and cubical sets, the notion of model presented here is notable for avoiding any form of Kan filling condition in the semantics of types.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا