Do you want to publish a course? Click here

The HoTT Library: A formalization of homotopy type theory in Coq

298   0   0.0 ( 0 )
 Publication date 2016
and research's language is English




Ask ChatGPT about the research

We report on the development of the HoTT library, a formalization of homotopy type theory in the Coq proof assistant. It formalizes most of basic homotopy type theory, including univalence, higher inductive types, and significant amounts of synthetic homotopy theory, as well as category theory and modalities. The library has been used as a basis for several independent developments. We discuss the decisions that led to the design of the library, and we comment on the interaction of homotopy type theory with recently introduced features of Coq, such as universe polymorphism and private inductive types.



rate research

Read More

95 - Michael Shulman 2017
This is an introduction to type theory, synthetic topology, and homotopy type theory from a category-theoretic and topological point of view, written as a chapter for the book New Spaces for Mathematics and Physics (ed. Gabriel Catren and Mathieu Anel).
We present a development of the theory of higher groups, including infinity groups and connective spectra, in homotopy type theory. An infinity group is simply the loops in a pointed, connected type, where the group structure comes from the structure inherent in the identity types of Martin-Lof type theory. We investigate ordinary groups from this viewpoint, as well as higher dimensional groups and groups that can be delooped more than once. A major result is the stabilization theorem, which states that if an $n$-type can be delooped $n+2$ times, then it is an infinite loop type. Most of the results have been formalized in the Lean proof assistant.
We begin by recalling the essentially global character of universes in various models of homotopy type theory, which prevents a straightforward axiomatization of their properties using the internal language of the presheaf toposes from which these model are constructed. We get around this problem by extending the internal language with a modal operator for expressing properties of global elements. In this setting we show how to construct a universe that classifies the Cohen-Coquand-Huber-Mortberg (CCHM) notion of fibration from their cubical sets model, starting from the assumption that the interval is tiny - a property that the interval in cubical sets does indeed have. This leads to an elementary axiomatization of that and related models of homotopy type theory within what we call crisp type theory.
We present a full formalization in Martin-Lofs Constructive Type Theory of the Standardization Theorem for the Lambda Calculus using first-order syntax with one sort of names for both free and bound variables and Stoughtons multiple substitution. Our formalization is based on a proof by Ryo Kashima, in which a notion of beta-reducibility with a standard sequence is captured by an inductive relation. The proof uses only structural induction over the syntax and the relations defined, which is possible due to the specific formulation of substitution that we employ. The whole development has been machine-checked using the system Agda.
The ALEA Coq library formalizes measure theory based on a variant of the Giry monad on the category of sets. This enables the interpretation of a probabilistic programming language with primitives for sampling from discrete distributions. However, continuous distributions have to be discretized because the corresponding measures cannot be defined on all subsets of their carriers. This paper proposes the use of synthetic topology to model continuous distributions for probabilistic computations in type theory. We study the initial $sigma$-frame and the corresponding induced topology on arbitrary sets. Based on these intrinsic topologies we define valuations and lower integrals on sets, and pro
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا