No Arabic abstract
Adding energy to a system through transient stirring usually leads to more disorder. In contrast, point-like vortices in a bounded two-dimensional fluid are predicted to reorder above a certain energy, forming persistent vortex clusters. Here we realize experimentally these vortex clusters in a planar superfluid: a $^{87}$Rb Bose-Einstein condensate confined to an elliptical geometry. We demonstrate that the clusters persist for long times, maintaining the superfluid system in a high energy state far from global equilibrium. Our experiments explore a regime of vortex matter at negative absolute temperatures, and have relevance to the dynamics of topological defects, two-dimensional turbulence, and systems such as helium films, nonlinear optical materials, fermion superfluids, and quark-gluon plasmas.
If a quantum fluid is driven with enough angular momentum, at equilibrium the ground state of the system is given by a lattice of quantised vortices whose density is prescribed by the quantization of circulation. We report on the first experimental study of the Feynman-Onsager relation in a non-equilibrium polariton fluid, free to expand and rotate. Upon initially imprinting a lattice of vortices in the quantum fluid, we track the vortex core positions on picosecond time scales. We observe an accelerated stretching of the lattice and an outward bending of the linear trajectories of the vortices, due to the repulsive polariton interactions. Access to the full density and phase fields allows us to detect a small deviation from the Feynman-Onsager rule in terms of a transverse velocity component, due to the density gradient of the fluid envelope acting on the vortex lattice.
Despite the prominence of Onsagers point-vortex model as a statistical description of 2D classical turbulence, a first-principles development of the model for a realistic superfluid has remained an open problem. Here we develop a mapping of a system of quantum vortices described by the homogeneous 2D Gross-Pitaevskii equation (GPE) to the point-vortex model, enabling Monte-Carlo sampling of the vortex microcanonical ensemble. We use this approach to survey the full range of vortex states in a 2D superfluid, from the vortex-dipole gas at positive temperature to negative-temperature states exhibiting both macroscopic vortex clustering and kinetic energy condensation, which we term an Onsager-Kraichnan condensate (OKC). Damped GPE simulations reveal that such OKC states can emerge dynamically, via aggregation of small-scale clusters into giant OKC-clusters, as the end states of decaying 2D quantum turbulence in a compressible, finite-temperature superfluid. These statistical equilibrium states should be accessible in atomic Bose-Einstein condensate experiments.
We experimentally study the emergence of high-energy equilibrium states in a chiral vortex gas of like-circulation vortices realized within a disk-shaped atomic Bose-Einstein condensate. In contrast to the familiar triangular Abrikosov lattice, the lowest-energy state of the superfluid in a rotating frame, we observe the formation of rotating vortex equilibria that are highly disordered and have significant energy per vortex. Experimental stirring protocols realize equilibrium states at both positive and negative absolute temperatures of the vortex gas. At sufficiently high energies the system exhibits a symmetry breaking transition, resulting in an off-axis equilibrium phase that no longer shares the symmetry of the container. By initializing vortices in a non-equilibrium distribution with sufficient energy, relaxation to equilibrium is observed within experimental timescales and an off-axis equilibrium state emerges at negative absolute temperature. The observed equilibria are in close agreement with mean field theory of the microcanonical ensemble of the vortex gas.
A large ensemble of quantum vortices in a superfluid may itself be treated as a novel kind of fluid that exhibits anomalous hydrodynamics. Here we consider the dynamics of vortex clusters with thermal friction, and present an analytic solution that uncovers a new universality class in the out-of-equilibrium dynamics of dissipative superfluids. We find that the long-time dynamics of the vorticity distribution is an expanding Rankine vortex (i.e.~top-hat distribution) independent of initial conditions. This highlights a fundamentally different decay process to classical fluids, where the Rankine vortex is forbidden by viscous diffusion. Numerical simulations of large ensembles of point vortices confirm the universal expansion dynamics, and further reveal the emergence of a frustrated lattice structure marked by strong correlations. We present experimental results in a quasi-two-dimensional Bose-Einstein condensate that are in excellent agreement with the vortex fluid theory predictions, demonstrating that the signatures of vortex fluid theory can be observed with as few as $Nsim 11$ vortices. Our theoretical, numerical, and experimental results establish the validity of the vortex fluid theory for superfluid systems.
We show the generation of two-dimensional quantum turbulence through simulations of a giant vortex decay in a trapped Bose-Einstein condensate. While evaluating the incompressible kinetic energy spectra of the quantum fluid described by the Gross-Pitaevskii equation, a bilinear form in a log-log plot is verified. A characteristic scaling behavior for small momenta shows resemblance to the Kolmogorov $k^{-5/3}$ law, while for large momenta it reassures the universal behavior of the core-size $k^{-3}$ power-law. This indicates a mechanism of energy transportation consistent with an inverse cascade. The feasibility of the described physical system with the currently available experimental techniques to create giant vortices opens up a new route to explore quantum turbulence.