Do you want to publish a course? Click here

Spontaneous generation of quantum turbulence through the decay of a giant vortex in a two-dimensional superfluid

124   0   0.0 ( 0 )
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show the generation of two-dimensional quantum turbulence through simulations of a giant vortex decay in a trapped Bose-Einstein condensate. While evaluating the incompressible kinetic energy spectra of the quantum fluid described by the Gross-Pitaevskii equation, a bilinear form in a log-log plot is verified. A characteristic scaling behavior for small momenta shows resemblance to the Kolmogorov $k^{-5/3}$ law, while for large momenta it reassures the universal behavior of the core-size $k^{-3}$ power-law. This indicates a mechanism of energy transportation consistent with an inverse cascade. The feasibility of the described physical system with the currently available experimental techniques to create giant vortices opens up a new route to explore quantum turbulence.



rate research

Read More

Under suitable forcing a fluid exhibits turbulence, with characteristics strongly affected by the fluids confining geometry. Here we study two-dimensional quantum turbulence in a highly oblate Bose-Einstein condensate in an annular trap. As a compressible quantum fluid, this system affords a rich phenomenology, allowing coupling between vortex and acoustic energy. Small-scale stirring generates an experimentally observed disordered vortex distribution that evolves into large-scale flow in the form of a persistent current. Numerical simulation of the experiment reveals additional characteristics of two-dimensional quantum turbulence: spontaneous clustering of same-circulation vortices, and an incompressible energy spectrum with $k^{-5/3}$ dependence for low wavenumbers $k$ and $k^{-3}$ dependence for high $k$.
In a recent experiment, Kwon et. al (arXiv:1403.4658 [cond-mat.quant-gas]) generated a disordered state of quantum vortices by translating an oblate Bose-Einstein condensate past a laser-induced obstacle and studying the subsequent decay of vortex number. Using mean-field simulations of the Gross-Pitaevskii equation, we shed light on the various stages of the observed dynamics. We find that the flow of the superfluid past the obstacle leads initially to the formation of a classical-like wake, which later becomes disordered. Following removal of the obstacle, the vortex number decays due to vortices annihilating and reaching the boundary. Our results are in excellent agreement with the experimental observations. Furthermore, we probe thermal effects through phenomenological dissipation.
Adding energy to a system through transient stirring usually leads to more disorder. In contrast, point-like vortices in a bounded two-dimensional fluid are predicted to reorder above a certain energy, forming persistent vortex clusters. Here we realize experimentally these vortex clusters in a planar superfluid: a $^{87}$Rb Bose-Einstein condensate confined to an elliptical geometry. We demonstrate that the clusters persist for long times, maintaining the superfluid system in a high energy state far from global equilibrium. Our experiments explore a regime of vortex matter at negative absolute temperatures, and have relevance to the dynamics of topological defects, two-dimensional turbulence, and systems such as helium films, nonlinear optical materials, fermion superfluids, and quark-gluon plasmas.
A large ensemble of quantum vortices in a superfluid may itself be treated as a novel kind of fluid that exhibits anomalous hydrodynamics. Here we consider the dynamics of vortex clusters with thermal friction, and present an analytic solution that uncovers a new universality class in the out-of-equilibrium dynamics of dissipative superfluids. We find that the long-time dynamics of the vorticity distribution is an expanding Rankine vortex (i.e.~top-hat distribution) independent of initial conditions. This highlights a fundamentally different decay process to classical fluids, where the Rankine vortex is forbidden by viscous diffusion. Numerical simulations of large ensembles of point vortices confirm the universal expansion dynamics, and further reveal the emergence of a frustrated lattice structure marked by strong correlations. We present experimental results in a quasi-two-dimensional Bose-Einstein condensate that are in excellent agreement with the vortex fluid theory predictions, demonstrating that the signatures of vortex fluid theory can be observed with as few as $Nsim 11$ vortices. Our theoretical, numerical, and experimental results establish the validity of the vortex fluid theory for superfluid systems.
We present a systematic derivation of the effective action for interacting vortices in a non-relativistic two-dimensional superfluid described by the Gross-Pitaevskii equation by integrating out longitudinal fluctuations of the order parameter. There are no logarithmically divergent coefficients in the equations of motion. Our analysis is valid in a dilute limit of vortices where the intervortex spacing is large compared to the core size, and where number fluctuations of atoms in vortex cores are suppressed. We analyze sound-induced corrections to the dynamics of a vortex-antivortex pair and show that there is no instability to annihilation, suggesting that sound-mediated interactions are not strong enough to ruin an inverse energy cascade in two-dimensional zero-temperature superfluid turbulence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا