Do you want to publish a course? Click here

Geometry Effects on Switching Currents in Superconducting Ultra Thin Films

150   0   0.0 ( 0 )
 Added by Antonio Leo
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Vortex dynamics is strongly connected with the mechanisms responsible for the photon detection of superconducting devices. Indeed, the local suppression of superconductivity by photon absorption may trigger vortex nucleation and motion effects, which can make the superconducting state unstable. In addition, scaling down the thickness of the superconducting films and/or the width of the bridge geometry can strongly influence the transport properties of superconducting films, e.g. affecting its critical current as well as its switching current into the normal state. Understanding such instability can boost the performances of those superconducting devices based on nanowire geometries. We present an experimental study on the resistive switching in NbN and NbTiN ultra-thin films with a thickness of few nanometers. Despite both films were patterned with the same microbridge geometry, the two superconducting materials show different behaviors at very low applied magnetic fields. A comparison with other low temperature superconducting materials outlines the influence of geometry effects on the superconducting transport properties of these materials particularly useful for devices applications.



rate research

Read More

156 - John R. Clem 2010
I consider a Corbino-geometry SNS (superconducting-normal-superconducting) Josephson weak link in a thin superconducting film, in which current enters at the origin, flows outward, passes through an annular Josephson weak link, and leaves radially. In contrast to sandwich-type annular Josephson junctions, in which the gauge-invariant phase difference obeys the sine-Gordon equation, here the gauge-invariant phase difference obeys an integral equation. I present exact solutions for the gauge-invariant phase difference across the weak link when it contains an integral number N of Josephson vortices and the current is zero. I then study the dynamics when a current is applied, and I derive the effective resistance and the viscous drag coefficient; I compare these results with those in sandwich-type junctions. I also calculate the critical current when there is no Josephson vortex in the weak link but there is a Pearl vortex nearby.
In this paper we calculate the critical currents in thin superconducting strips with sharp right-angle turns, 180-degree turnarounds, and more complicated geometries, where all the line widths are much smaller than the Pearl length $Lambda = 2 lambda^2/d$. We define the critical current as the current that reduces the Gibbs free-energy barrier to zero. We show that current crowding, which occurs whenever the current rounds a sharp turn, tends to reduce the critical current, but we also show that when the radius of curvature is less than the coherence length this effect is partially compensated by a radius-of-curvature effect. We propose several patterns with rounded corners to avoid critical-current reduction due to current crowding. These results are relevant to superconducting nanowire single-photon detectors, where they suggest a means of improving the bias conditions and reducing dark counts. These results also have relevance to normal-metal nanocircuits, as these patterns can reduce the electrical resistance, electromigration, and hot spots caused by nonuniform heating.
We report on terahertz frequency-domain spectroscopy (THz-FDS) experiments in which we measure charge carrier dynamics and excitations of thin-film superconducting systems at low temperatures in the THz spectral range. The characteristics of the set-up and the experimental procedures are described comprehensively. We discuss the single-particle density of states and a theory of electrodynamic absorption and optical conductivity of conventional superconductors. We present the experimental performance of the setup at low temperatures for a broad spectral range from 0.1 - 1.1 THz by the example of ultra-thin films of weakly disordered superconductors niobium nitride (NbN) and tantalum nitride (TaN) with different values of critical temperatures. Furthermore, we analyze and interpret our experimental data within the framework of conventional Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity.
We present low temperature tunneling density-of-states measurements in Al films in high parallel magnetic fields. The thickness range of the films, t=6-9 nm, was chosen so that the orbital and Zeeman contributions to their parallel critical fields were comparable. In this quasi-spin paramagnetically limited configuration, the field produces a significant suppression of the gap, and at high fields the gapless state is reached. By comparing measured and calculated tunneling spectra we are able to extract the value of the antisymmetric Fermi-liquid parameter G^0 and thereby deduce the quasiparticle density dependence of the effective parameter G^0_{eff} across the gapless state.
Thin-film superconductors with thickness 30 to 500 nm are used as non-equilibrium quantum detectors for photons, phonons or more exotic particles. One of the most basic questions in determining their limiting sensitivity is the efficiency with which the quanta of interest couple to the detected quasiparticles. As low temperature superconducting resonators, thin-films are attractive candidates for producing quantum-sensitive arrayable sensors and the readout uses an additional microwave probe. We have calculated the quasiparticle generation efficiency eta_s for low energy photons in a representative, clean thin-film superconductor (Al) operating well-below its superconductingtransition temperature as a function of film thickness, within the framework of the coupled kineticequations described by Chang and Scalapino.[J. J. Chang and D. J. Scalapino, J. Low Temp. Phys. 31, 1 (1978)]. We have also included the effect of a lower frequency probe. We show that phonon loss from the thin-film reduces eta_s by as much as 40% compared to earlier models that considered relatively thick films or infinite volumes. We also show that the presence of the probe and signal enhances the generation efficiency slightly. We conclude that the ultimate limiting noise equivalent power of this class of detector is determined by the thin-film geometry.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا