Do you want to publish a course? Click here

Robust and discriminative zero-watermark scheme based on invariant feature and similarity-based retrieval for protecting large-scale DIBR 3D videos

125   0   0.0 ( 0 )
 Added by Yifan Wang
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Digital rights management (DRM) of depth-image-based rendering (DIBR) 3D video is an emerging area of research. Existing schemes for DIBR 3D video cause video distortions, are vulnerable to severe signal and geometric attacks, cannot protect 2D frame and depth map independently or can hardly deal with large-scale videos. To address these issues, a novel zero-watermark scheme based on invariant feature and similarity-based retrieval for protecting DIBR 3D video (RZW-SR3D) is proposed in this study. In RZW-SR3D, invariant features are extracted to generate master and ownership shares for providing distortion-free, robust and discriminative copyright identification under various attacks. Different from traditional zero-watermark schemes, features and ownership shares are stored correlatively, and a similarity-based retrieval phase is designed to provide effective solutions for large-scale videos. In addition, flexible mechanisms based on attention-based fusion are designed to protect 2D frame and depth map independently and simultaneously. Experimental results demonstrate that RZW-SR3D have superior DRM performances than existing schemes. First, RZW-SR3D can extracted the ownership shares relevant to a particular 3D video precisely and reliably for effective copyright identification of large-scale videos. Second, RZW-SR3D ensures lossless, precise, reliable and flexible copyright identification for 2D frame and depth map of 3D videos.



rate research

Read More

Digital image watermarking is the process of embedding and extracting a watermark covertly on a cover-image. To dynamically adapt image watermarking algorithms, deep learning-based image watermarking schemes have attracted increased attention during recent years. However, existing deep learning-based watermarking methods neither fully apply the fitting ability to learn and automate the embedding and extracting algorithms, nor achieve the properties of robustness and blindness simultaneously. In this paper, a robust and blind image watermarking scheme based on deep learning neural networks is proposed. To minimize the requirement of domain knowledge, the fitting ability of deep neural networks is exploited to learn and generalize an automated image watermarking algorithm. A deep learning architecture is specially designed for image watermarking tasks, which will be trained in an unsupervised manner to avoid human intervention and annotation. To facilitate flexible applications, the robustness of the proposed scheme is achieved without requiring any prior knowledge or adversarial examples of possible attacks. A challenging case of watermark extraction from phone camera-captured images demonstrates the robustness and practicality of the proposal. The experiments, evaluation, and application cases confirm the superiority of the proposed scheme.
The expressive nature of the voice provides a powerful medium for communicating sonic ideas, motivating recent research on methods for query by vocalisation. Meanwhile, deep learning methods have demonstrated state-of-the-art results for matching vocal imitations to imitated sounds, yet little is known about how well learned features represent the perceptual similarity between vocalisations and queried sounds. In this paper, we address this question using similarity ratings between vocal imitations and imitated drum sounds. We use a linear mixed effect regression model to show how features learned by convolutional auto-encoders (CAEs) perform as predictors for perceptual similarity between sounds. Our experiments show that CAEs outperform three baseline feature sets (spectrogram-based representations, MFCCs, and temporal features) at predicting the subjective similarity ratings. We also investigate how the size and shape of the encoded layer effects the predictive power of the learned features. The results show that preservation of temporal information is more important than spectral resolution for this application.
Visual localization is a crucial problem in mobile robotics and autonomous driving. One solution is to retrieve images with known pose from a database for the localization of query images. However, in environments with drastically varying conditions (e.g. illumination changes, seasons, occlusion, dynamic objects), retrieval-based localization is severely hampered and becomes a challenging problem. In this paper, a novel domain-invariant feature learning method (DIFL) is proposed based on ComboGAN, a multi-domain image translation network architecture. By introducing a feature consistency loss (FCL) between the encoded features of the original image and translated image in another domain, we are able to train the encoders to generate domain-invariant features in a self-supervised manner. To retrieve a target image from the database, the query image is first encoded using the encoder belonging to the query domain to obtain a domain-invariant feature vector. We then preform retrieval by selecting the database image with the most similar domain-invariant feature vector. We validate the proposed approach on the CMU-Seasons dataset, where we outperform state-of-the-art learning-based descriptors in retrieval-based localization for high and medium precision scenarios.
Font selection is one of the most important steps in a design workflow. Traditional methods rely on ordered lists which require significant domain knowledge and are often difficult to use even for trained professionals. In this paper, we address the problem of large-scale tag-based font retrieval which aims to bring semantics to the font selection process and enable people without expert knowledge to use fonts effectively. We collect a large-scale font tagging dataset of high-quality professional fonts. The dataset contains nearly 20,000 fonts, 2,000 tags, and hundreds of thousands of font-tag relations. We propose a novel generative feature learning algorithm that leverages the unique characteristics of fonts. The key idea is that font images are synthetic and can therefore be controlled by the learning algorithm. We design an integrated rendering and learning process so that the visual feature from one image can be used to reconstruct another image with different text. The resulting feature captures important font design details while is robust to nuisance factors such as text. We propose a novel attention mechanism to re-weight the visual feature for joint visual-text modeling. We combine the feature and the attention mechanism in a novel recognition-retrieval model. Experimental results show that our method significantly outperforms the state-of-the-art for the important problem of large-scale tag-based font retrieval.
Historical watermark recognition is a highly practical, yet unsolved challenge for archivists and historians. With a large number of well-defined classes, cluttered and noisy samples, different types of representations, both subtle differences between classes and high intra-class variation, historical watermarks are also challenging for pattern recognition. In this paper, overcoming the difficulty of data collection, we present a large public dataset with more than 6k new photographs, allowing for the first time to tackle at scale the scenarios of practical interest for scholars: one-shot instance recognition and cross-domain one-shot instance recognition amongst more than 16k fine-grained classes. We demonstrate that this new dataset is large enough to train modern deep learning approaches, and show that standard methods can be improved considerably by using mid-level deep features. More precisely, we design both a matching score and a feature fine-tuning strategy based on filtering local matches using spatial consistency. This consistency-based approach provides important performance boost compared to strong baselines. Our model achieves 55% top-1 accuracy on our very challenging 16,753-class one-shot cross-domain recognition task, each class described by a single drawing from the classic Briquet catalog. In addition to watermark classification, we show our approach provides promising results on fine-grained sketch-based image retrieval.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا