No Arabic abstract
Visual localization is a crucial problem in mobile robotics and autonomous driving. One solution is to retrieve images with known pose from a database for the localization of query images. However, in environments with drastically varying conditions (e.g. illumination changes, seasons, occlusion, dynamic objects), retrieval-based localization is severely hampered and becomes a challenging problem. In this paper, a novel domain-invariant feature learning method (DIFL) is proposed based on ComboGAN, a multi-domain image translation network architecture. By introducing a feature consistency loss (FCL) between the encoded features of the original image and translated image in another domain, we are able to train the encoders to generate domain-invariant features in a self-supervised manner. To retrieve a target image from the database, the query image is first encoded using the encoder belonging to the query domain to obtain a domain-invariant feature vector. We then preform retrieval by selecting the database image with the most similar domain-invariant feature vector. We validate the proposed approach on the CMU-Seasons dataset, where we outperform state-of-the-art learning-based descriptors in retrieval-based localization for high and medium precision scenarios.
Visual localization is a crucial component in the application of mobile robot and autonomous driving. Image retrieval is an efficient and effective technique in image-based localization methods. Due to the drastic variability of environmental conditions, e.g. illumination, seasonal and weather changes, retrieval-based visual localization is severely affected and becomes a challenging problem. In this work, a general architecture is first formulated probabilistically to extract domain-invariant feature through multi-domain image translation. And then a novel gradient-weighted similarity activation mapping loss (Grad-SAM) is incorporated for finer localization with high accuracy. We also propose a new adaptive triplet loss to boost the metric learning of the embedding in a self-supervised manner. The final coarse-to-fine image retrieval pipeline is implemented as the sequential combination of models without and with Grad-SAM loss. Extensive experiments have been conducted to validate the effectiveness of the proposed approach on the CMU-Seasons dataset. The strong generalization ability of our approach is verified on RobotCar dataset using models pre-trained on urban part of CMU-Seasons dataset. Our performance is on par with or even outperforms the state-of-the-art image-based localization baselines in medium or high precision, especially under the challenging environments with illumination variance, vegetation and night-time images. Moreover, real-site experiments have been conducted to validate the efficiency and effectiveness of the coarse-to-fine strategy for localization.
Font selection is one of the most important steps in a design workflow. Traditional methods rely on ordered lists which require significant domain knowledge and are often difficult to use even for trained professionals. In this paper, we address the problem of large-scale tag-based font retrieval which aims to bring semantics to the font selection process and enable people without expert knowledge to use fonts effectively. We collect a large-scale font tagging dataset of high-quality professional fonts. The dataset contains nearly 20,000 fonts, 2,000 tags, and hundreds of thousands of font-tag relations. We propose a novel generative feature learning algorithm that leverages the unique characteristics of fonts. The key idea is that font images are synthetic and can therefore be controlled by the learning algorithm. We design an integrated rendering and learning process so that the visual feature from one image can be used to reconstruct another image with different text. The resulting feature captures important font design details while is robust to nuisance factors such as text. We propose a novel attention mechanism to re-weight the visual feature for joint visual-text modeling. We combine the feature and the attention mechanism in a novel recognition-retrieval model. Experimental results show that our method significantly outperforms the state-of-the-art for the important problem of large-scale tag-based font retrieval.
Zero-shot sketch-based image retrieval (ZS-SBIR) is a specific cross-modal retrieval task for searching natural images given free-hand sketches under the zero-shot scenario. Most existing methods solve this problem by simultaneously projecting visual features and semantic supervision into a low-dimensional common space for efficient retrieval. However, such low-dimensional projection destroys the completeness of semantic knowledge in original semantic space, so that it is unable to transfer useful knowledge well when learning semantic from different modalities. Moreover, the domain information and semantic information are entangled in visual features, which is not conducive for cross-modal matching since it will hinder the reduction of domain gap between sketch and image. In this paper, we propose a Progressive Domain-independent Feature Decomposition (PDFD) network for ZS-SBIR. Specifically, with the supervision of original semantic knowledge, PDFD decomposes visual features into domain features and semantic ones, and then the semantic features are projected into common space as retrieval features for ZS-SBIR. The progressive projection strategy maintains strong semantic supervision. Besides, to guarantee the retrieval features to capture clean and complete semantic information, the cross-reconstruction loss is introduced to encourage that any combinations of retrieval features and domain features can reconstruct the visual features. Extensive experiments demonstrate the superiority of our PDFD over state-of-the-art competitors.
In recent years, camera-based localization has been widely used for robotic applications, and most proposed algorithms rely on local features extracted from recorded images. For better performance, the features used for open-loop localization are required to be short-term globally static, and the ones used for re-localization or loop closure detection need to be long-term static. Therefore, the motion attribute of a local feature point could be exploited to improve localization performance, e.g., the feature points extracted from moving persons or vehicles can be excluded from these systems due to their unsteadiness. In this paper, we design a fully convolutional network (FCN), named MD-Net, to perform motion attribute estimation and feature description simultaneously. MD-Net has a shared backbone network to extract features from the input image and two network branches to complete each sub-task. With MD-Net, we can obtain the motion attribute while avoiding increasing much more computation. Experimental results demonstrate that the proposed method can learn distinct local feature descriptor along with motion attribute only using an FCN, by outperforming competing methods by a wide margin. We also show that the proposed algorithm can be integrated into a vision-based localization algorithm to improve estimation accuracy significantly.
In this paper, we present a versatile method for visual localization. It is based on robust image retrieval for coarse camera pose estimation and robust local features for accurate pose refinement. Our method is top ranked on various public datasets showing its ability of generalization and its great variety of applications. To facilitate experiments, we introduce kapture, a flexible data format and processing pipeline for structure from motion and visual localization that is released open source. We furthermore provide all datasets used in this paper in the kapture format to facilitate research and data processing. Code and datasets can be found at https://github.com/naver/kapture, more information, updates, and news can be found at https://europe.naverlabs.com/research/3d-vision/kapture.