Do you want to publish a course? Click here

Hypergraphic polytopes: combinatorial properties and antipode

115   0   0.0 ( 0 )
 Added by John Machacek
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

In an earlier paper, the first two authors defined orientations on hypergraphs. Using this definition we provide an explicit bijection between acyclic orientations in hypergraphs and faces of hypergraphic polytopes. This allows us to obtain a geometric interpretation of the coefficients of the antipode map in a Hopf algebra of hypergraphs. This interpretation differs from similar ones for a different Hopf structure on hypergraphs provided recently by Aguiar and Ardila. Furthermore, making use of the tools and definitions developed here regarding orientations of hypergraphs we provide a characterization of hypergraphs giving rise to simple hypergraphic polytopes in terms of acyclic orientations of the hypergraph. In particular, we recover this fact for the nestohedra and the hyper-permutahedra, and prove it for generalized Pitman-Stanley polytopes as defined here.



rate research

Read More

Matching fields were introduced by Sturmfels and Zelevinsky to study certain Newton polytopes and more recently have been shown to give rise to toric degenerations of various families of varieties. Whenever a matching field gives rise to a toric degeneration, the associated polytope of the toric variety coincides with the matching field polytope. We study combinatorial mutations, which are analogues of cluster mutations for polytopes, of matching field polytopes and show that the property of giving rise to a toric degeneration of the Grassmannians, is preserved by mutation. Moreover the polytopes arising through mutations are Newton-Okounkov bodies for the Grassmannians with respect to certain full-rank valuations. We produce a large family of such polytopes, extending the family of so-called block diagonal matching fields.
We introduce new families of combinatorial objects whose enumeration computes volumes of flow polytopes. These objects provide an interpretation, based on parking functions, of Baldoni and Vergnes generalization of a volume formula originally due to Lidskii. We recover known flow polytope volume formulas and prove new volume formulas for flow polytopes that were seemingly unapproachable. A highlight of our model is an elegant formula for the flow polytope of a graph we call the caracol graph. As by-products of our work, we uncover a new triangle of numbers that interpolates between Catalan numbers and the number of parking functions, we prove the log-concavity of rows of this triangle along with other sequences derived from volume computations, and we introduce a new Ehrhart-like polynomial for flow polytope volume and conjecture product formulas for the polytopes we consider.
It is known that the coordinate ring of the Grassmannian has a cluster structure, which is induced from the combinatorial structure of a plabic graph. A plabic graph is a certain bipartite graph described on the disk, and there is a family of plabic graphs giving a cluster structure of the same Grassmannian. Such plabic graphs are related by the operation called square move which can be considered as the mutation in cluster theory. By using a plabic graph, we also obtain the Newton-Okounkov polytope which gives a toric degeneration of the Grassmannian. The purposes of this article is to survey these phenomena and observe the behavior of Newton-Okounkov polytopes under the operation called the combinatorial mutation of polytopes. In particular, we reinterpret some operations defined for Newton-Okounkov polytopes using the combinatorial mutation.
In this paper, we study Lefschetz properties of Artinian reductions of Stanley-Reisner rings of balanced simplicial $3$-polytopes. A $(d-1)$-dimensional simplicial complex is said to be balanced if its graph is $d$-colorable. If a simplicial complex is balanced, then its Stanley-Reisner ring has a special system of parameters induced by the coloring. We prove that the Artinian reduction of the Stanley-Reisner ring of a balanced simplicial $3$-polytope with respect to this special system of parameters has the strong Lefschetz property if the characteristic of the base field is not two or three. Moreover, we characterize $(2,1)$-balanced simplicial polytopes, i.e., polytopes with exactly one red vertex and two blue vertices in each facet, such that an analogous property holds. In fact, we show that this is the case if and only if the induced graph on the blue vertices satisfies a Laman-type combinatorial condition.
An oriented hypergraph is an oriented incidence structure that generalizes and unifies graph and hypergraph theoretic results by examining its locally signed graphic substructure. In this paper we obtain a combinatorial characterization of the coefficients of the characteristic polynomials of oriented hypergraphic Laplacian and adjacency matrices via a signed hypergraphic generalization of basic figures of graphs. Additionally, we provide bounds on the determinant and permanent of the Laplacian matrix, characterize the oriented hypergraphs in which the upper bound is sharp, and demonstrate that the lower bound is never achieved.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا